Convex Functions
Recall that a function \(f \) over \(\mathbb{R}^n \) is convex if for any two inputs \(x, y \in \mathbb{R}^n \) and any \(\lambda \in [0, 1] \) we have
\[
 f(\lambda x + (1-\lambda)y) \leq \lambda f(x) + (1-\lambda)f(y).
\]
In other words, the line segment from \((x, f(x))\) to \((y, f(y))\) stays “above” the function. Alternatively, if the function is differentiable then it is convex iff for all \(x, y \), we have
\[
 f(y) \geq f(x) + \langle \nabla f(x), y-x \rangle.
\]
Moreover, recall that a set \(K \subseteq \mathbb{R}^n \) is convex if for any two points \(x, y \in K \) and any \(\lambda \in [0, 1] \) we have that the point \(\lambda x + (1-\lambda)y \) \(\in K \). In other words, the line segment from \(x \) to \(y \) stays inside the set.

Gradient Descent
In the lecture notes (Theorem 7) we show that starting with the point \(x_0 \) and using the gradient descent rule \(x_{t+1} \leftarrow x_t - \eta \nabla f_t(x_t) \) at each step, we get that for any fixed point \(x^* \), we have the following bound.
\[
 \sum_{t=0}^{T-1} f_t(x_t) \leq \sum_{t=0}^{T-1} f_t(x^*) + \frac{\eta}{2} G^2 T + \frac{1}{2\eta} \left\| x_0 - x^* \right\|^2, \tag{1}
\]
where \(G \) is an upper bound on the norm of the gradient \(\left\| \nabla f(x) \right\| \). Let’s see how to use this to find a point \(\hat{x} \) at which the function value is very close to the minimum value.

1. Suppose we get a fixed function \(f_t = f \) at each step. From the above expression, show that if we set \(\hat{x} = \frac{1}{T} \sum_{t=0}^{T-1} x_t \), then
\[
 f(\hat{x}) \leq f(x^*) + \frac{\text{regret}(T)}{T}.
\]

Solution: Use the first definition of convexity to show that
\[
 f(\hat{x}) = f \left(\frac{1}{T} \sum_{t=0}^{T-1} x_t \right) \leq \frac{1}{T} \sum_{t=0}^{T-1} f(x_t).
\]
This is \(1/T \) times the LHS of (1). Which is at most \(1/T \) times the RHS of (1), which is \(f(x^*) + \text{regret}(T)/T \).
2. Suppose we set the “learning rate” \(\eta = \frac{\|x_0 - x^*\|}{G \sqrt{T}} \). Show that \(\text{regret}(T) \leq G \|x_0 - x^*\| \sqrt{T} \).

Solution: Substituting and doing some simple algebra.

3. Combining the above two parts, show that after \(T = \left(\frac{G \|x^* - x_0\|}{\varepsilon} \right)^2 \) steps, the function value \(f(\hat{x}) \leq f(x^*) + \varepsilon \).

Solution: Substituting and doing some simple algebra.

Now let’s see what we can get in a setting like that for the experts algorithm. Suppose you know the function \(f(x) = \sum_i c_i x_i \) for some \(c = (c_1, \ldots, c_n) \in [0, M]^n \) (i.e., \(f \) is linear) and suppose we have some convex body \(K \) contained within the unit cube: i.e., \(K \subseteq \{x \mid 0 \leq x_i \leq 1 \ \forall i \in \{1, 2, \ldots, n\} \} \).

4. What is the diameter of \(K \)? (The diameter is the maximum Euclidean distance between two points in \(K \).)

Solution: The maximum distance is bounded by the max-distance between \((0, 0, \ldots, 0)\) and \((1, 1, \ldots, 1)\), which is \(\sqrt{1^2 + 1^2 + \ldots + 1^2} = \sqrt{n} \).

5. If you start with some \(x_0 \in K \), give an upper bound on \(\|x_0 - x^*\| \).

Solution: \(\|x_0 - x^*\| \) is at most the diameter of the cube, so setting \(D := \sqrt{n} \) suffices.

6. What is the maximum value of \(\|\nabla f(x)\| \) at any point \(x \in K \)?

Solution: \(\nabla f(x) = \nabla (c_1 x_1 + \ldots + c_n x_n) = c \), so \(\|\nabla f(x)\| = \|c\| \leq M \sqrt{n} \). Hence you can set \(G = M \sqrt{n} \).

7. Plugging these values in, what expressions do you get for \(T, \eta \)?

Solution: Recall \(T = \left(\frac{\|x_0 - x^*\|G}{\varepsilon} \right)^2 \). Substituting, \(\eta = \frac{\|x_0 - x^*\|}{G \sqrt{T}} = \frac{\varepsilon}{M^2 n} \).