

Lecture 23: Graph Compression

David Woodruff
Carnegie Mellon University

Outline

- Motivating Questions

- Spanners

- Multiplicative

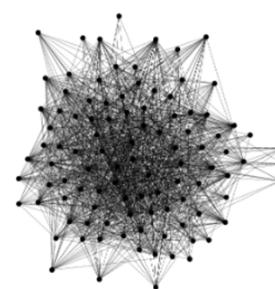
- Additive

Diameter

- You have an unweighted, undirected graph $G = (V, E)$ on n vertices
- Diameter is $D_G = \max_{u, v \text{ in } V} d_G(u, v)$, where $d_G(u, v)$ is shortest path distance
- *How to compute D_G ?*
 - All pairs shortest path algorithm such as Floyd-Warshall
 - Time is $O(|E| n)$ which could be $O(n^3)$
 - Can we compute or approximate D_G faster?

Shortest Path Queries

- $G = (V, E)$ is an unweighted, undirected graph on n vertices
- Want to answer shortest path queries: what is $d_G(u, v)$?
- $|E|$ can be $\Theta(n^2)$, so want to “compress” G to fit in memory, but still want to answer shortest path queries
- Replace G with a subgraph $H = (V, E')$
 - Store H instead of G
 - Given query $d_G(u, v)$, respond with $d_H(u, v)$
- Suppose $G = (V, E)$ is a clique
 - *If $\{u, v\}$ not in H , what is $d_G(u, v)$ and what is $d_H(u, v)$?*
- Can we find a small subgraph H to approximate $d_G(u, v)$ for all u, v ?



Outline

- Motivating Questions

- **Spanners**

- Multiplicative
 - Additive

Spanners

- $G = (V, E)$ is undirected, unweighted graph on n vertices
- $d_G(u, v)$ is shortest path distance from u to v
- A (k, b) -spanner of G is a subgraph $H = (V, E')$ such that for all u, v in V
$$d_G(u, v) \leq d_H(u, v) \leq k \cdot d_G(u, v) + b$$
- If $b = 0$, H is a **multiplicative** spanner
- If $k = 1$, H is an **additive** spanner
- Do there exist (k, b) -spanners H with small $|E'|$?

Application of Spanners

- Shortest path query $d_G(u, v)$
 - Replace G with a (k, b) -spanner H with $|E'|$ edges
 - Output $d_H(u, v)$
 - **Approximation:** $d_G(u, v) \leq d_H(u, v) \leq k \cdot d_G(u, v) + b$
 - **Space:** $O(|E'| + n)$ instead of $O(|E| + n)$
 - **Time:** $O(|E'| + n)$ instead of $O(|E| + n)$
- Approximating diameter D_G
 - Replace G with a (k, b) -spanner H with $|E'|$ edges
 - Output diameter D_H of H
 - **Approximation:** $D_G \leq D_H \leq k \cdot D_G + b$
 - **Time:** $O(n|E'|)$ instead of $O(n|E|)$
- Faster if $|E'| \ll |E|$, but have to account for the time to create H

Outline

- Motivating Questions

- Spanners

- Multiplicative

- Additive

Multiplicative Spanners

- A (k, b) -spanner of G is a subgraph $H = (V, E')$ such that for all u, v in V
$$d_G(u, v) \leq d_H(u, v) \leq k \cdot d_G(u, v) + b$$
- If $b = 0$, then $d_G(u, v) \leq d_H(u, v) \leq k \cdot d_G(u, v)$ for all u, v in V
 - $H = (V, E')$ is a k -multiplicative spanner
 - *How small can $|E'|$ be?*
- If $d_G(u, v) = 1$, then $d_H(u, v) \leq k$
- Conversely, if $d_H(u, v) \leq k$ for all *edges* $\{u, v\}$ of G , then for any vertices $u', v' \in V$,
$$d_H(u', v') \leq k \cdot d_G(u', v')$$
- To construct H , just need for all edges $\{u, v\}$ in E , $d_H(u, v) \leq k$

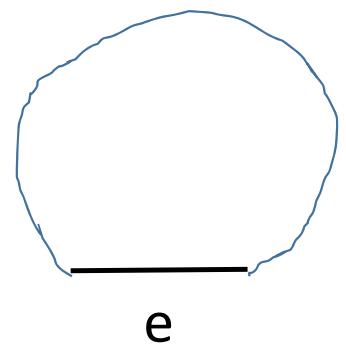
Greedy Algorithm for Multiplicative Spanners

- Let's build $H = (V, E')$ by walking through the edges of G

- Initialize $H = (V, \emptyset)$

- For each edge e in G

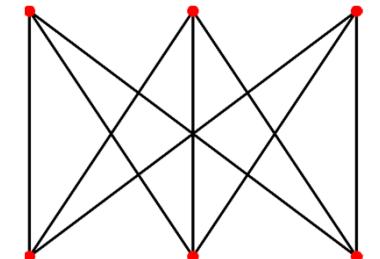
- If _____, then include e in H



- *That's the algorithm! What should _____ be?*
 - “If e doesn't form a cycle of length at most $k+1$ with the edges you've already included”
- *Why is this correct?*
 - For each edge not included, there's a path of length at most k between its endpoints
- How many edges does H have?

Bounding the Number of Edges in H

- H doesn't have a cycle of length at most $k+1$. *Why?*
- Minimum cycle length is called the girth
- What's the maximum number of edges in a graph with girth at least $k+2$?
 - *What if $k = 2$?*
 - A complete bipartite graph has $\Omega(n^2)$ edges, and girth 4
 - *What if $k = 3$?*
 - At most $O(n^{\frac{3}{2}})$ edges!
 - For $k=2t$ or $k=2t-1$ for an integer t , at most $O(n^{1+\frac{1}{t}})$ edges, so H is tiny!



Bounding the Number of Edges in H

- **Theorem:** for $k=2t$ or $k=2t-1$, a graph with girth at least $k+2$ has $O(n^{1+\frac{1}{t}})$ edges
- **Lemma:** let $\bar{d} = 2m/n$ be the average degree in a graph G with m edges and n nodes. There is a non-empty subgraph G' of G with minimum degree $\bar{d}/2$
- Proof: Initialize $V_0 = V$ and $E_0 = E$
 - $i = 0$
 - While there is a vertex v of degree at most $|E_i|/|V_i|$,
 - $i \leftarrow i + 1$
 - $V_i \leftarrow V_{i-1} \setminus \{v\}$
 - $E_i \leftarrow E_{i-1} \setminus \{\{v, w\} \text{ for all neighbors } w \text{ of } v\}$
 - Output $G' = (V_i, E_i)$
 - G' is non-empty because $\frac{|E_i|}{|V_i|} \geq \frac{|E_{i-1}|}{|V_{i-1}|} \geq \dots \geq \frac{|E|}{|V|} = \frac{m}{n} > 0$

For $t \leq \frac{x}{y}$ we have:

$$\frac{x-t}{y-1} \geq \frac{x - \frac{x}{y}}{y-1} = \frac{x\left(1 - \frac{1}{y}\right)}{y\left(1 - \frac{1}{y}\right)} = \frac{x}{y}$$

Bounding the Number of Edges in H

- **Theorem:** for $k = 2t$ or $k=2t-1$, a graph with girth at least $k+2$ has $O(n^{1+\frac{1}{t}})$ edges
- Proof:
 - By lemma, a graph G has a non-empty subgraph G' with min degree $\bar{d}/2$
 - Grow a breadth-first-search (BFS) tree from a node $v \in G'$
 - G' has girth $k+2$
 - At level t in the BFS tree, there are at least $\left(\frac{\bar{d}}{2} - 1\right)^t$ *distinct* nodes
 - $\left(\frac{\bar{d}}{2} - 1\right)^t \leq n$, so $\left(\frac{m}{n} - 1\right)^t \leq n$, and solving gives $m \leq n + n^{1+\frac{1}{t}}$

Can we do Better?

- **Girth conjecture:** for $k = 2t$ or $k=2t-1$, there are graphs with girth $k+2$ and $\Omega(n^{1+\frac{1}{t}})$ edges
- Implies any k -multiplicative spanner has $\Omega(n^{1+\frac{1}{t}})$ edges. *Why?*
- If we delete any edge $\{u,v\}$ in G , the distance from u to v increases from 1 to $k+1$
- Only k -spanner of G is G itself
- Girth conjecture true for $k = 1, 2, 3, 5$

Where are We?

- Can find a $(2t-1)$ -spanner with $O(n^{1+\frac{1}{t}})$ edges
- Can approximate $d_G(u, v)$ for any u, v up to a multiplicative factor $2k-1$
- Don't store G , just store H . Only $O(|E'|) = O(n^{1+\frac{1}{t}})$ instead of $O(n^2)$ edges
- Time to compute $d_H(u, v)$, given H , is $O(|E'|) = O(n^{1+\frac{1}{t}})$
 - Faster than the $O(n^2)$ time to query a dense graph G
 - Greedy algorithm to find H is slow, but can find H in $O(|E|+n)$ time

Outline

- Motivating Questions

- Spanners

- Multiplicative

- Additive

Additive Spanners

- A (k, b) -spanner of G is a subgraph $H = (V, E')$ such that for all u, v in V
$$d_G(u, v) \leq d_H(u, v) \leq k \cdot d_G(u, v) + b$$
- If $k = 1$, then $d_G(u, v) \leq d_H(u, v) \leq d_G(u, v) + b$ for all u, v in V
 - $H = (V, E')$ is a b -additive spanner
 - *How small can $|E'|$ be?*
- For multiplicative spanners, sufficient to show for all edges $\{u, v\}$ in G , $d_H(u, v) \leq k$
 - Insufficient for additive spanners to show $d_H(u, v) \leq b + 1$ for all edges $\{u, v\}$ in G
- **Would you believe:** there is a 2-additive spanner with $O(n^{3/2} \log n)$ edges?

Additive Spanner Algorithm

- The algorithm has two parts

(1) Include in H all edges incident to vertices of degree at most \sqrt{n}

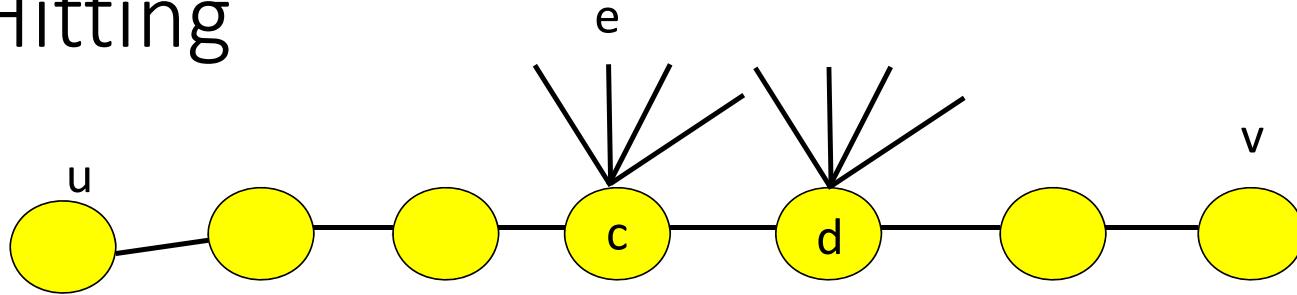
- at most $n^{3/2}$ edges (**why?**)

(2) Randomly sample a set S of $2\sqrt{n} \cdot \ln n$ vertices and include a BFS tree rooted at each vertex in S , in H

- at most $2n^{3/2} \ln n$ edges (**why?**)

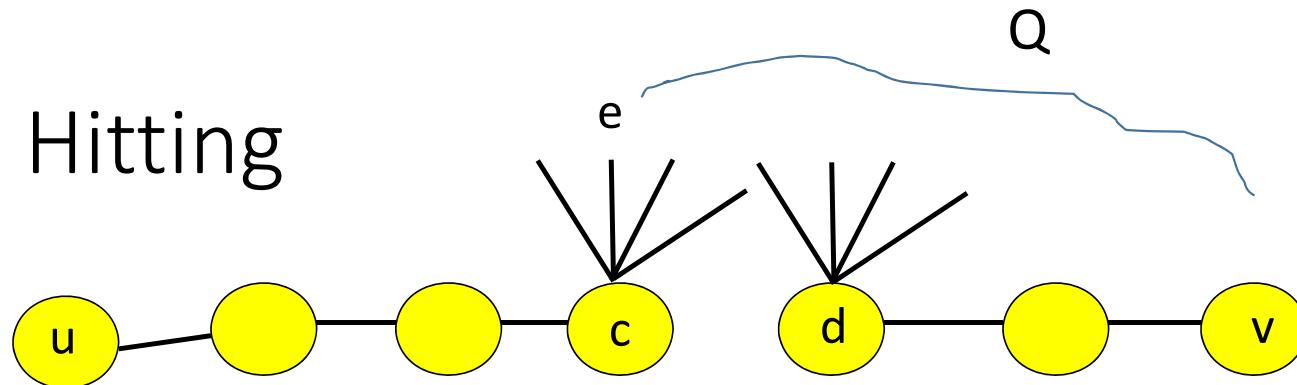
H has $O(n^{\frac{3}{2}} \log n)$ edges. Why is it a 2-additive spanner?

Path Hitting



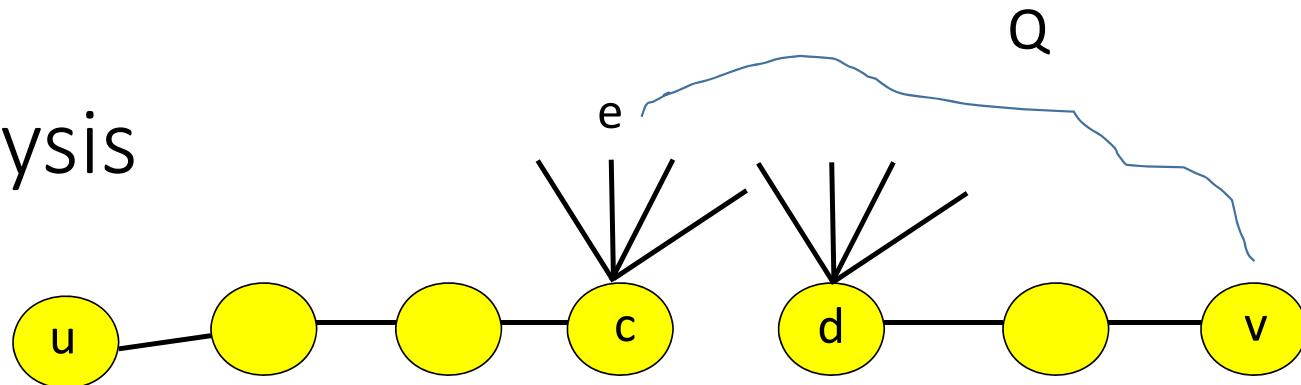
- Consider a shortest path P from u to v in G
- If all nodes on P have degree $\leq \sqrt{n}$, then all edges in P are included in the spanner H
- Otherwise consider the first edge $\{c, d\}$ in P , but not in H
 - c and d have degree at least \sqrt{n}
- Since we randomly sample a set S of size $2\sqrt{n} \cdot \ln n$, with high probability, we sample a neighbor e of c (probability we don't sample a neighbor of c at most $\left(1 - \frac{\sqrt{n}}{n}\right)^{2\sqrt{n} \ln n} \leq \frac{1}{n^2}$)

Path Hitting



- For each of our sampled vertices in S , we grew a BFS tree
- Let T_e be the BFS tree rooted at e included in H
- Let Q be the path from e to v in T_e
- Consider the path P' in H which follows P from u to c , then traverses edge $\{c, e\}$, then follows Q to v . *How long is P' ?*

Analysis



- Consider the path P' in H which follows P from u to c , then traverses edge $\{c, e\}$, then follows Q to v . **How long is P' ?**
- Q is a shortest path from e to v in G !
- $d_Q(e, v) \leq 1 + d_P(c, v)$
- $d_{P'}(u, v) = d_P(u, c) + 1 + d_Q(e, v) \leq d_P(u, c) + d_P(c, v) + 2 = d_P(u, v) + 2$

Additive Spanner Notes

- Can find a 2-additive spanner with $O(n^{3/2} \log n)$ edges
 - Can get $O(n^{3/2})$ edges
- Can find a 4-additive spanner with $n^{7/5} \text{poly}(\log n)$ edges
- Can find a 6-additive spanner with $O(n^{4/3})$ edges
- For any constant $C > 0$, any C -additive spanner requires $\Omega(n^{4/3})$ edges