
15-451/651: Design & Analysis of Algorithms March 21, 2016
Lecture #17 last changed: March 28, 2016

Today we discuss an algorithm for solving linear programming feasibility problems of the form
Aw ≥ 1, where w is our vector of variables. It will in fact do more than this, as we will see.1

1 Online linear classification

Consider the following problem. You have a sequence of email messages arriving one at a time
a1,a2,a3, . . ., and for each one you (the algorithm) have to decide whether to mark it “important”
or “not important”. After marking it, you are then told (by your user) if you were correct or if you
made a mistake.

Let’s assume that email messages are represented as vectors in some space Rn, such as indicating
how many times each word in the dictionary appears in the email message (in this case, n is
the number of words in the dictionary, and this would be called a “bag of words” model). Let’s
furthermore suppose that there exists some unknown weight vector w∗ such that ai · w∗ ≥ 1 for
the important emails (the positive examples) and ai ·w∗ ≤ −1 for the non-important emails (the
negative examples). Our goal is to give an algorithm for performing this task that makes as few
mistakes as possible.

2 The Perceptron Algorithm

The Perceptron Algorithm is one such algorithm for this problem. It maintains a weight vector w
that it uses for prediction (predicting positive on ai if ai ·w > 0 and predicting negative if ai ·w < 0)
and then updates it when it makes a mistake (let’s say it says “I don’t know” if ai ·w = 0 and so
makes a mistake either way). What we will prove about the algorithm is the following theorem.

Theorem 1 [Block (’62), Novikoff (’62), Minsky-Papert (’69)] On any sequence of examples a1,a2, . . .,
if there exists a consistent w∗, i.e., ai · w∗ ≥ 1 for the positive examples and ai · w∗ ≤ −1 for
the negative examples, then the Perceptron algorithm makes at most R2||w∗||2 mistakes, where
R = maxi ||ai||.

To get a feel for this statement, notice that if we multiply all entries in all the ai by 100, we can
divide all entries in w∗ by 100 and it will still be consistent. So the bound is invariant to this kind
of scaling (i.e., what our “units” are).

Secondly, if we rewrite ai ·w∗ ≥ 1 as ai ·w∗/||w∗|| ≥ 1/||w∗||, and we think of the ai as points in Rn,
then we can think of the LHS as the distance of ai to the hyperplane a ·w∗ = 0. So, we can think of
w∗ as defining a linear separator that separates the positive examples from the negative examples,
and what the theorem is saying is that if there exists a hyperplane that correctly separates the
positive examples from the negative examples by a large margin, then the total number of mistakes
will be small.

2.1 Perceptron for Solving Linear Programs

Before giving the algorithm and analysis, note that by the above theorem, we can use it to solve
“feasibility” linear programs of the form Aw ≥ 1. I.e., these are LPs where we just want to find

1Note the change in notation, using w instead of x; this will avoid confusion: traditionally in our machine learning
motivation, the data is called x1,x2, . . ., whereas in LPs x is the solution. So we’ll just not use x at all today.

1

w ∈ Rn such that ai · w ≥ 1 for all i ∈ [m]. (Since A may contain both positive and negative
values, finding such a w is not trivial. Such LPs are called “cone” LPs.) In fact, given any LP of
the form Aw ≥ b, we could multiply each entry on the ith row ai of A by 1/bi, and transform it
into A′w ≥ 1 where a′ij = aij/bi.

How to solve this feasibility LP? Just cycle through the constraints (viewing each one as a positive
example) until the algorithm stops making any more mistakes. At this point we have Aw > 0, and
we can just scale up w to be large enough so that Aw ≥ 1.

2.2 The algorithm

The Perceptron algorithm (due to Frank Rosenblatt) is simply the following:

1. Begin with w = 0.

2. Given ai, predict positive if ai · w > 0 and predict negative if ai · w < 0, else say “I don’t
know”.

3. If a mistake was made (or the prediction was “I don’t know”):

• If the correct answer was “positive”, update: w← w + ai.

• If the correct answer was “negative”, update: w← w − ai.

2.3 The analysis

Proof (Theorem 1): Fix some consistent w∗. We will keep track of two quantities, w ·w∗ and
||w||2.

• First of all, each time we make a mistake, w ·w∗ increases by at least 1. That is because if
ai is a positive example, then

(w + ai) ·w∗ = w ·w∗ + ai ·w∗ ≥ w ·w∗ + 1,

by definition of w∗. Similarly, if ai is a negative example, then

(w − ai) ·w∗ = w ·w∗ − ai ·w∗ ≥ w ·w∗ + 1.

• Next, on each mistake, we claim that ||w||2 increases by at most R2. Let us first consider
mistakes on positive examples. If we make a mistake on a positive example ai then we have

(w + ai) · (w + ai) = ||w||2 + 2w · ai + ||ai||2 ≤ ||w||2 + ||ai||2 ≤ ||w||2 +R2,

where the middle inequality comes from the fact that we made a mistake, which means that
w · ai ≤ 0. Similarly, if we make a mistake on a negative example ai then we have

(w − ai) · (w − ai) = ||w||2 − 2w · ai + ||ai||2 ≤ ||w||2 + ||ai||2 ≤ ||w||2 +R2.

Note that it is important here that we only update on a mistake.

So, if we make M mistakes, then w ·w∗ ≥ M (by the first bullet point). Also, ||w||2 ≤ MR2, or
equivalently, ||w|| ≤ R

√
M (by the second).

2

https://en.wikipedia.org/wiki/Frank_Rosenblatt

Finally, we use the fact that w ·w∗/||w∗|| ≤ ||w|| which is just saying that the projection of w in
the direction of w∗ cannot be larger than the length of w. This gives us:

M/||w∗|| ≤ R
√
M√

M ≤ R||w∗||
M ≤ R2||w∗||2

as desired. �

2.4 Extensions and hinge-loss

We assumed above that there existed a perfect w∗ that correctly classified all the examples, i.e.,
correctly classified all the emails into important versus non-important. This is rarely the case in
real-life data. What if w∗ isn’t quite perfect? We can see what this does to the above proof: if there
is an example that w∗ doesn’t correctly classify, then while the second part of the proof still holds,
the first part (the dot product of w with w∗ increasing) breaks down. However, if this doesn’t
happen too often, and also ai ·w∗ is just a “little bit wrong” then this just means we will make a
few more mistakes.

To make this formal, define the hinge-loss of w∗ on a positive example ai as max(0, 1− ai ·w∗). In
other words, if ai ·w∗ ≥ 1 as desired then the hinge-loss is zero; else, the hinge-loss is the amount
the LHS is less than the RHS.2

Similarly, the hinge-loss of w∗ on a negative example ai is max(0, 1 + ai ·w∗). Given a sequence of
labeled examples A, define the total hinge-loss Lhinge(w

∗, A) as the sum of hinge-losses of w∗ on
all examples in A. We now get the following extended theorem.

Theorem 2 On any sequence of examples A = a1,a2, . . ., the Perceptron algorithm makes at most

min
w∗

(
R2||w∗||2 + 2Lhinge(w

∗, A)
)

mistakes, where R = maxi ||ai||.

Proof: As before, each update of the Perceptron algorithm increases ||w||2 by at most R2, so if
the algorithm makes M mistakes, we have ||w||2 ≤MR2.

What we can no longer say is that each update of the algorithm increases w · w∗ by at least 1.
Instead, on a positive example we are “increasing” w ·w∗ by ai ·w∗ (it could be negative), which
is at least 1 − Lhinge(w

∗,ai). Similarly, on a negative example we “increase” w ·w∗ by −ai ·w∗,
which is also at least 1 − Lhinge(w

∗,ai). If we sum this up over all mistakes, we get that at the
end we have w ·w∗ ≥M −Lhinge(w

∗, A), where we are using here the fact that hinge-loss is never
negative so summing over all of A is only larger than summing over the mistakes that w made.

2This is called “hinge-loss” because as a function of ai ·w∗ it looks like a hinge.

3

Finally, we just do some algebra. Let L = Lhinge(w
∗, A). If M ≤ L, then the theorem is clearly

true. Else we can assume that M > L, and hence 0 < M − L ≤ w ·w∗. Now we have:

w ·w∗/||w∗|| ≤ ||w||
⇒ (w ·w∗)2 ≤ ||w||2||w∗||2

⇒ (M − L)2 ≤ MR2||w∗||2

⇒M2 − 2ML+ L2 ≤ MR2||w∗||2

⇒M − 2L+ L2/M ≤ R2||w∗||2

⇒M ≤ R2||w∗||2 + 2L− L2/M ≤ R2||w∗||2 + 2L

as desired. �

2.5 Kernel functions

What if even the best w∗ has high hinge-loss? E.g., maybe instead of a linear separator decision
boundary, the boundary between important emails and unimportant emails looks more like a circle?

A neat idea for addressing situations like this is to use what are called kernel functions, or sometimes
the “kernel trick”. Here is the idea. Suppose you have a function K (called a “kernel”) over pairs
of data points such that for some (doesn’t even have to be known) function φ : Rn → RN (where
perhaps N � n) we have K(ai,aj) = φ(ai) · φ(aj).

In that case, if we can write the Perceptron algorithm so that it only interacts with the data via dot
products, and then replace every dot-product with an invocation of K, then we can act as if we had
performed the function φ explicitly without having to actually compute φ. For example, consider
K(ai,aj) = (1 + ai · aj)d. It turns out this corresponds to a mapping φ into a space of dimension
N ≈ nd (try doing it with d = 2), and perhaps in this higher-dimensional space there is a w∗ such
that the bound of Theorem 2 is small. But the nice thing is we didn’t have to computationally
perform the mapping φ!

So, how can we view the Perceptron algorithm as only interacting with data via dot-products?
Notice that w is always a linear combination of data points, e.g., we might have w = a1 + a2− a5.
So if we keep track of it this way, and need to predict on a new example a6, we can write w · a6 =
a1 · a6 + a2 · a6− a5 · a6. So if we just replace each of these dot-products with “K”, we are running
the algorithm as if we had explicitly performed the φ mapping. This is called “kernelizing” the
algorithm.

4

3 Other Notes

3.1 Perceptron’s Worst-Case Runtime

The runtime of Perceptron may be exponential in the number of bits required to write down the
input. Here’s an example:

(Take the powerpoint example from today’s lecture. The positive points are at (1, 1), (1, 0), and
a negative point at (0, 1).) Now add in another positive point at (1/K, 1) for some large integer
K > 0. Note that the length of each vector ai is no more than

√
2 so the R2 term is only 2.

Moreover, the total length of the input is O(logK) bits. This is because the number of bits to
write down a fraction 1/K is only O(logK). And numbers 0 and 1 take O(1) bits.

But if you run the Perceptron algorithm, you’ll see that you will run for at least Ω(K) steps, maybe
even more, before you find a linear separator for this data. And Ω(K) is exponential in the length
of the input.

3.2 Affine Linear Separators

Suppose we want a linear separator that did not necessarily pass through the origin. I.e., we want a
vector w∗ and real b, such that w∗ ·ai > b for the positive examples and w∗ ·ai < b for the negative
ones. Call the pair (w∗, b) an affine separator. Here’s an easy way to do this using Perceptron.

Add a new coordinate to each data point ai ∈ Rn and put value 1 in it—call the new “lifted” points
a′i ∈ Rn+1. Then for any w∗, b as above, you can define vector v∗ ∈ Rn+1 to be the same as w∗ in
the first n coordinates, and with value −b in the n+ 1st coordinate. Observe v∗ · a′i = w∗ · ai − b
which is > 0 for the positive examples and < 0 for the negative ones. So there exists a linear
separator v∗ for the lifted points if and only if there exists an affine separator for the original
points.

Now, you could just run Perceptron on the lifted points, find the vector v = (v1, v2, . . . , vn+1) ∈
Rn+1, and be able to infer that w = (v1, . . . , vn), b = −vn+1 is a good affine separator.

5

	Online linear classification
	The Perceptron Algorithm
	Perceptron for Solving Linear Programs
	The algorithm
	The analysis
	Extensions and hinge-loss
	Kernel functions

	Other Notes
	Perceptron's Worst-Case Runtime
	Affine Linear Separators

