
15-451/651: Algorithms CMU, Spring 2015
Lecture #19: Linear Programming in Two Dimensions March 30, 2015
Lecturer: Danny Sleator

1 Standard Linear Programming Terminology and Notation

A linear program (LP) written in the following form is said to be in Standard Form:

maximize cTx

subject to Ax ≤ b

x ≥ 0

Here there are n non-negative variables x1, x1, . . . , xn, and m linear constraints encapsulated in
the m × n matrix A and the m × 1 matrix (vector) b. The objective function to be maximized is
represented by the n× 1 matrix (vector) c.

!
"#$%&'(!)&#*+!,-(!,./0! 01.2!3)!

OneNote Online https://onenote.officeapps.live.com/o/onenoteframe.aspx?Fi=SDACE4EBC921613DBE!...

1 of 1 3/30/15 7:00 PM

Any LP can be expressed in standard form. Example 1: if we are given an LP with some linear
equalities, we can split each equality into two inequalities. Example 2: if we need a variable xi to
be allowed to be positive or negative, we replace it by the difference between two variables x′i and
x′′i . Let xi = x′i − x′′i , and eliminate all occurrences of x in the LP by this substitution.

An LP is feasible if there exists a point x satisfying the constraints, and infeasible otherwise.

An LP is unbounded if ∀B ∃x such that x is feasible and cTx > B. Otherwise it is bounded .

An LP has an optimal solution iff it is feasible and bounded.

The job of an LP solver is to classify a given LP into these categories, and if it is feasible and
bounded, it should return a point with the optimum value of the objective function.

1



2 LP in Two Dimensions

In this lecture I present an algorithm of Raimund Seidel to solve LPs with two variables and m
constraints in expected O(m) time.

The input to the problem is an LP in the following form:

maximize cTx

subject to Ax ≤ b

Note that here we don’t require that the variables be non-negative. This is strictly more general
than standard form. If we do wish the variables to be non-negative, we can simply add those
constraints to A (increasing m by two).

We will think about the algorithm geometrically. Each constraint is a half-space. We number the
constraints C1, C2, . . . Cm. The objective function is a 2D vector, and we are trying to find a point
which is farthest in that direction.

To simplify the explanation of the algorithm we will make an additional assumption about the linear
system. We assume that there is no constraint which is perpendicular to the objective function. In
other words, we don’t allow this kind of situation:!

"#$%&'(!"&)*+!,-(!.-/0! ,1.,!2"!

OneNote Online https://onenote.officeapps.live.com/o/onenoteframe.aspx?Fi=SDACE4EBC921613DBE!...

1 of 1 3/30/15 7:28 PM

Seidel’s 2D LP Algorithm:

Part 1: Determine Boundedness

For the purposes of this part, rotate the entire system so that the c vector
points in the positive x2 direction. (Such a rotation has no effect on the
boundedness of the LP.) Now search through all of the constraints, looking
for ones whose normal (in the direction of the satisfying side of the constraint)
are down and to the right and down and to the left. If there exists one or
more of each type, then the system is bounded. If not then the system is
unbounded. In this case the algorithm returns “unbounded”.

!
"#$%&'(!"&)*+!,-(!.-/0! ,1.,!2"!

OneNote Online https://onenote.officeapps.live.com/o/onenoteframe.aspx?Fi=SDACE4EBC921613DBE!...

1 of 1 3/30/15 8:35 PM

2



Now reorder the constraints so that the two bounding ones that we just found
are numbered C1 and C2. The remaining constraints are C3, . . . , Cm.

Part 2: Finding the Optimum Solution

Now randomly permute the remaining constraints C3, . . . , Cm. We’re going
to process them in that order. We’re going to generate a sequence of points
P2, P3, . . . , Pm such that Pi is the optimum solution to the first i constraints.
We can immediately compute P2, which is the intersection point between C1

and C2.

For each i from 3 to m do:

Test if Pi−1 satisfies constraint Ci. If it does, let Pi = Pi−1 and con-
tinue the loop.

So Pi−1 violates the constraint Ci. Now we try to generate a new
point Pi that satisfies all the constraints C1, . . . , Ci.

Let Li be the line of the boundary of the constraint Ci. Each of
the constraints C1, . . . , Ci−1 that is not parallel to Li maps to a 1D
constraint inside the line Li. (The ones that are parallel to L1 are ir-
relevant.) In addition, the objective function also maps to a direction
inside of Li that optimizes it. (Here again we use the assumption that
c is not perpendicular to Li.) This 1D LP problem is easily solved by
constructing the feasible interval. If it contains no points then our
LP is infeasible, so return “infeasible”. Otherwise take the end of
the feasible interval that has the maximum objective function value.
This is our point Pi. In the figure below, the intersection between all
the prior constraints and Li are shown in red.

!
"#$%&'(!"&)*+!,-(!.-/0! 01-.!2"!

OneNote Online https://onenote.officeapps.live.com/o/onenoteframe.aspx?Fi=SDACE4EBC921613DBE!...

1 of 1 3/30/15 9:09 PM

If the loop completes then the optimum solution is Pm. (If it does not com-
plete, then it must have returned “infeasible” already.)

3



Theorem: Seidel’s algorithm runs in expected O(m) time.

Proof: Note that at any point in time we have a point Pi which is the optimum solution to the
constraints C1, . . . , Ci. We also have two constraints among these, call them Ck and Cl, which are
the ones that prove the bound on the objective function, and whose intersection point is Pi.

The time it takes to go to compute Pi from Pi−1 depends on whether or not Pi−1 satisfies Ci. If it
does, then the step is O(1) time. Otherwise the algorithm must look at all the previous constraints
and takes O(i) time.

So let’s use backward analysis. Suppose we are at a point in time when we just computed Pi as
the optimum solution to C1, . . . , Ci. We now randomly remove one of the constraints C3, . . . , Ci.
What is the probability that Pi differs from Pi−1? In order for this to happen we must remove one
of the two constraints that constrain the current Pi. What is an upper bound on the probability
of this happening?

The probability of this happening is at most 2/(i − 2). This happens when just two constraints
go through Pi, and those are from among C3, . . . , Ci. In which case the probability of removing
one of those two is at most 2/(i − 2). In all other cases the probability is lower. For example if
several constraints conspire to bound Pi. This only lowers the probability that Pi changes. It’s also
lowered if C1 and/or C2 are involved in constraining Pi, cause these will not be removed.

So the cost of computing Pi is at most 2i with probability 2/(i − 2), and 1 with the remaining
probability. So the expected cost of the step is at most 2i/(i − 2) ≤ 6 because i ≥ 3. So the
expected running time of the algorithm is O(m). QED.

4


	Standard Linear Programming Terminology and Notation
	LP in Two Dimensions

