1 Standard Linear Programming Terminology and Notation

A linear program (LP) written in the following form is said to be in Standard Form:

$$
\begin{array}{r}
\operatorname{maximize} c^{T} x \\
\text { subject to } A x \leq b \\
x \geq 0
\end{array}
$$

Here there are n non-negative variables $x_{1}, x_{1}, \ldots, x_{n}$, and m linear constraints encapsulated in the $m \times n$ matrix A and the $m \times 1$ matrix (vector) b. The objective function to be maximized is represented by the $n \times 1$ matrix (vector) c.

Any LP can be expressed in standard form. Example 1: if we are given an LP with some linear equalities, we can split each equality into two inequalities. Example 2: if we need a variable x_{i} to be allowed to be positive or negative, we replace it by the difference between two variables x_{i}^{\prime} and $x_{i}^{\prime \prime}$. Let $x_{i}=x_{i}^{\prime}-x_{i}^{\prime \prime}$, and eliminate all occurrences of x in the LP by this substitution.
An LP is feasible if there exists a point x satisfying the constraints, and infeasible otherwise.
An LP is unbounded if $\forall B \exists x$ such that x is feasible and $c^{T} x>B$. Otherwise it is bounded.
An LP has an optimal solution iff it is feasible and bounded.
The job of an LP solver is to classify a given LP into these categories, and if it is feasible and bounded, it should return a point with the optimum value of the objective function.

2 LP in Two Dimensions

In this lecture I present an algorithm of Raimund Seidel to solve LPs with two variables and m constraints in expected $O(m)$ time.

The input to the problem is an LP in the following form:

$$
\begin{array}{r}
\operatorname{maximize} c^{T} x \\
\text { subject to } A x \leq b
\end{array}
$$

Note that here we don't require that the variables be non-negative. This is strictly more general than standard form. If we do wish the variables to be non-negative, we can simply add those constraints to A (increasing m by two).

We will think about the algorithm geometrically. Each constraint is a half-space. We number the constraints $C_{1}, C_{2}, \ldots C_{m}$. The objective function is a 2 D vector, and we are trying to find a point which is farthest in that direction.
To simplify the explanation of the algorithm we will make an additional assumption about the linear system. We assume that there is no constraint which is perpendicular to the objective function. In other words, we don't allow this kind of situation:

Seidel's 2D LP Algorithm:

Part 1: Determine Boundedness

For the purposes of this part, rotate the entire system so that the c vector points in the positive x_{2} direction. (Such a rotation has no effect on the boundedness of the LP.) Now search through all of the constraints, looking for ones whose normal (in the direction of the satisfying side of the constraint) are down and to the right and down and to the left. If there exists one or more of each type, then the system is bounded. If not then the system is unbounded. In this case the algorithm returns "unbounded".

Now reorder the constraints so that the two bounding ones that we just found are numbered C_{1} and C_{2}. The remaining constraints are C_{3}, \ldots, C_{m}.

Part 2: Finding the Optimum Solution

Now randomly permute the remaining constraints C_{3}, \ldots, C_{m}. We're going to process them in that order. We're going to generate a sequence of points $P_{2}, P_{3}, \ldots, P_{m}$ such that P_{i} is the optimum solution to the first i constraints. We can immediately compute P_{2}, which is the intersection point between C_{1} and C_{2}.

For each i from 3 to m do:
Test if P_{i-1} satisfies constraint C_{i}. If it does, let $P_{i}=P_{i-1}$ and continue the loop.

So P_{i-1} violates the constraint C_{i}. Now we try to generate a new point P_{i} that satisfies all the constraints C_{1}, \ldots, C_{i}.

Let L_{i} be the line of the boundary of the constraint C_{i}. Each of the constraints C_{1}, \ldots, C_{i-1} that is not parallel to L_{i} maps to a 1D constraint inside the line L_{i}. (The ones that are parallel to L_{1} are irrelevant.) In addition, the objective function also maps to a direction inside of L_{i} that optimizes it. (Here again we use the assumption that c is not perpendicular to L_{i}.) This 1D LP problem is easily solved by constructing the feasible interval. If it contains no points then our LP is infeasible, so return "infeasible". Otherwise take the end of the feasible interval that has the maximum objective function value. This is our point P_{i}. In the figure below, the intersection between all the prior constraints and L_{i} are shown in red.

If the loop completes then the optimum solution is P_{m}. (If it does not complete, then it must have returned "infeasible" already.)

Theorem: Seidel's algorithm runs in expected $O(m)$ time.
Proof: Note that at any point in time we have a point P_{i} which is the optimum solution to the constraints C_{1}, \ldots, C_{i}. We also have two constraints among these, call them C_{k} and C_{l}, which are the ones that prove the bound on the objective function, and whose intersection point is P_{i}.

The time it takes to go to compute P_{i} from P_{i-1} depends on whether or not P_{i-1} satisfies C_{i}. If it does, then the step is $O(1)$ time. Otherwise the algorithm must look at all the previous constraints and takes $O(i)$ time.

So let's use backward analysis. Suppose we are at a point in time when we just computed P_{i} as the optimum solution to C_{1}, \ldots, C_{i}. We now randomly remove one of the constraints C_{3}, \ldots, C_{i}. What is the probability that P_{i} differs from P_{i-1} ? In order for this to happen we must remove one of the two constraints that constrain the current P_{i}. What is an upper bound on the probability of this happening?

The probability of this happening is at most $2 /(i-2)$. This happens when just two constraints go through P_{i}, and those are from among C_{3}, \ldots, C_{i}. In which case the probability of removing one of those two is at most $2 /(i-2)$. In all other cases the probability is lower. For example if several constraints conspire to bound P_{i}. This only lowers the probability that P_{i} changes. It's also lowered if C_{1} and/or C_{2} are involved in constraining P_{i}, cause these will not be removed.

So the cost of computing P_{i} is at most $2 i$ with probability $2 /(i-2)$, and 1 with the remaining probability. So the expected cost of the step is at most $2 i /(i-2) \leq 6$ because $i \geq 3$. So the expected running time of the algorithm is $O(m)$. QED.

