
15-451/651 Algorithm Design & Analysis, Fall 2025

Recitation #6

Objectives

• Review network flow

• Practice reducing problems to network flows, where the max-flow/min-cut yields the opti-
mal solution to the original problem.

• Understand how to write proofs of correctness for reductions to flow problems.

Review

Residual capacity: c f (u , v ) =

¨

c (u , v )− f (u , v ) if (u , v ) ∈ E

f (v, u ) if (v, u ) ∈ E

Decrease the capacity of the edges you’ve push flow through and then draw edges representing
the reverse of the flow we’ve pushed (to track it so that we could “undo” it).

Residual graph: Given a flow f in graph G , the residual graph G f is the directed graph with
all edges of positive residual capacity (including reverse edges in the original graph G ).

Ford Fulkerson: while there exists an s → t path P of positive residual capacity, push the
maximum possible flow along P (so we saturate this path with flow).

Min cut /max flow: In any flow network G , for any two vertices s and t , the maximum flow
from s to t equals the capacity of the minimum (s , t )-cut. An (s , t )-cut is a disjoint partition
of the vertices into (S , T ) such that s ∈ S and t ∈ T . The capacity of this cut is the sum of the
(non-residual) capacities of the directed edges crossing the cut from S to T .

Recitation Problems

1. (FOX Tiles) There is an n by n grid of the letters F, O, and X. The goal is to form as many
disjoint copies of the word FOX as possible in the given grid. To form FOX you start at any
F, move to a neighboring O, then move to a neighboring X, (you can move up, down, left, or
right to get to a neighbor). The following figure shows one such problem on the left, along
with three possible FOXs on the right.

X F F O
O F O X
F F X O
X F O F

X F F O
O F O X
F F X O
X F O F

X F F O
O F O X
F F X O
X F O F

Give a polynomial-time algorithm to find the solution with the largest number of FOX’s.
Your algorithm should consist of reducing the problem to an instance of max flow.
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2. (Cut into Teams) CMU intramural sport season is coming up, and Maximus Flow and Min-
nie Cut want to form teams to compete in the intramural football game. They have a group
of n students that they want to split into two teams with Maximus captaining team A and
Minnie captaining team B . Each student has some preference toward being on Maximus’
or Minnie’s team however. In particular, Max and Min need to pay $Ai for student i to join
team A and $Bi for student i to join team B. To further complicate things, some pairs of
students are friends. For each friend pair, they would prefer to be on the same team. For
each friend pair (i , j ) that ends up on different teams, Max and Min will have to pay an
extra $Ki , j for making them unhappy. Being college students with no money and no free
time, Maximus and Minnie want to form these teams with the lowest price possible and in
polynomial time. Note that the two teams do not have to be of the same size.

(a) Reduce this to constructing a flow network where a given cut (partition of the vertices
into two sets (A, B )) corresponds to assigning students to either team A or B .

(b) Now suppose each friend pair (i , j ) refused to be separated and will quit if they do.
How can you adjust your flow network without deleting/merging any nodes to guar-
antee that no such friend pair will be put on different teams?
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Useful facts

The following two problems present very useful facts that can help when proving the cor-
rectness of reductions to flows/cuts. Proving these facts is optional, but it is very nice to
remember or write down these facts so that you can cite them in your proofs!

3. (Two Types of Cuts - Optional) Cuts can be defined as subsets of the edges of the graph
instead of partitions of the vertices. We will prove that these two definitions are almost
equivalent.

A subset X of directed edges separates s and t if every directed path from s to t contains at
least one directed edge in X . For any subset S of vertices, letσS denote the set of directed
edges leaving S (i.e. σS := {u→ v |u ∈ S , v ̸∈ S}).

(a) Prove that if (S , T ) is an (s , t ) cut, thenσS separates s and t .

(b) Let X be an arbitrary subset of edges that separates s and t . Prove that there is an (s , t )
cut (S , T ) such thatσS ⊆ X .

(c) Let X be a minimal subset of edges that separates s and t . Prove that there is an (s , t )
cut (S , T ) such thatσS = X .

4. (Path decompositions - Optional) When finding maximum flows using the Ford-Fulkerson
algorithm, we always build up flows by adding together s -t paths of flow (including some
paths that use reverse edges in the residual network G f , so technically they are not all s -t
paths in the original network G ). It turns out to be very useful that the opposite is true,
any s -t flow can be decomposed into a set of s -t paths (and cycles). This is called the flow
decomposition theorem:

Theorem: Given a flow network G and a feasible s -t flow f , there exists a set of at most m
s -t flows f1, f2, . . . , fk such that

• for each flow fi , it is non-zero only on one s -t path or one cycle in G ,

• the sum of the fi ’s is exactly f .

In other words, the flow f can be “decomposed” into k ≤m paths and cycles.

Prove the flow decomposition theorem.
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