15-451/651 Algorithm Design & Analysis, Fall 2023

Recitation #3

Objectives
* Practice amortized analysis using the aggregate and potential methods

* Practice applying the union-find data structure as an ingredient

Recitation Problems

1. (Deque) There is a classic method to construct a first-in-first-out queue with O(1) amor-
tized cost operations pushBack and popFront from two last-in-first-out stacks with
cost 1 operations pushFront, popFront, and size as follows:

Let stacks S; and S, represent the front/head and back/tail of the queue Q
respectively. Then implement the operations by moving all elements from S,
to S; whenever we would need to remove but it is empty:

pushBack (x) {
S2.pushFront (x)
}

popFront () {
if (Sl.size() == 0) {
for i in range(S2.size()) {
S1.pushFront (S2.popFront ())
}
}
return Sl.popFront ()

}

Under this implementation the amortized bounds follow from setting ®(S,, S,) = 2|S,|
and correctness follows from the invariant that the elements of Q are always equal to
the elements of S; appended to the elements of S, in reverse.

front S kS back back ‘S | front

<« 5 |4 KO R T S

back front

— S Y32
Q

One natural extension of this is to implement a deque, which in addition to the standard
queue functionality, also provides pushFront and popBack, allowing users to insert
and remove from either side as they please.

(a) Suppose you provide symmetric implementations of those methods as follows:

pushFront (x) {
S1l.pushFront (x)
}

popBack () {
if (S2.size() == 0) {
for i in range(Sl.size()) {
S2.pushFront (S1.popFront ())
}

}
return S2.popFront ()

}

Using the aggregate method, give a sequence of n operations under which each
operation has)(n) amortized cost.

(b) Now suppose you had access to a third stack S; to use for temporary processing.
Come up with a way to implement the deque operations that maintains the invari-
ant but avoids the expensive case above.

(c) Define a potential function ®(S,, S,) and use it to prove that the operations you de-
fined have O(1) amortized cost.

(d) Suppose that you start with an empty deque and then perform 7 operations (push
or pop from either the front of the back). Bound the total actual cost of these op-
erations.

2. (Corn Intervals) You are a serf and you have a singular strip of land shaped like a num-
ber line. Your capitalist overlords have given you a list of n integer locations to plant
cornstalks at in the order they are given. However, you are also lazy and only want to
harvest good intervals of corn. A good interval [, j] is defined as a interval containing

at least k consecutive cornstalks such that there are no cornstalks at i —1 and j + 1.

M A A ! A
RALLNN 1NN
0 \ 2 3 Y 'Y PR € A

In this picture, if k = 3, the interval [1, 4] is the only good interval.

Write an algorithm keeping track of where you have planted corn such that at any time,
you can determine the number of good intervals in O(1). You're allowed O(loglogn)
time to process each time you plant a cornstalk.

3. (Tree Path) There is a tree consisting of n nodes numbered from 0 to n — 1 and exactly
n—1 edges. Each node also has an integer value.

You are also given a set E of undirected edges where (i, j) € E means that there is an
undirected edge connecting nodes i and j.

A good path is a simple path that satisfies the following conditions:

The starting node and the ending node are distinct nodes with the same value. All nodes
between the starting node and the ending node have values less than or equal to the

starting node (and the ending node).

Note that a path and its reverse are counted as the same path.

N v ()

In the picture above, there is 1 good path: 1->0->2->4.

(a) Let’s assume you know the maximum value in the tree, v,,,,. Find the number of
good paths where the starting/ending node have value v,,,, .

(b) Now let’s broaden the problem- find the total number of good paths in the tree in
O(nlogn).

