
15-451/651 Algorithm Design & Analysis, Fall 2023

Recitation #2

Objectives

• Learn about k -wise independent hashing and practice proving it

• Understand the technique of fingerprinting and apply it to solve string problems

Recitation Problems

1. (k -wise Independent Hashing) Recall from class that a hash familyH is k -wise inde-
pendent if for all k distinct keys x1, x2, . . . , xk ∈U and every set of k values v1, v2, . . . , vk ∈
{0, 1, . . . , m −1}, we have that

Pr
h∈H
[h (x1) = v1 ∧h (x2) = v2 ∧ · · · ∧h (xk ) = vk ] =

1

m k

Intuitively, this means that if you look at only up to k keys, the hash family appears to
hash them truly randomly.

(a) Is this hash family from U = {a , b } to {0, 1} (i.e., m = 2) universal? one-wise inde-
pendent (i.e., uniform)? how about pairwise independent?

a b
h1 0 0
h2 1 0

(b) Can you fill in the blanks in this hash family with values in {0, 1} to make it pairwise
independent? 3-wise independent?

a b c
h1 0 0
h2 1
h3 0
h4 1 1 0

2. (Extended Matrix Method) In lecture we covered the matrix method of hashing integers
by interpreting them as binary vectors from the universeU = {0, 1}w , into a table of size
m = 2b indexed by {0, 1}b where each hash function in the family is defined by a random
matrix A ∈ {0, 1}b×w and

h (x ) = Ax mod 2

1



(a) Prove that the matrix method is not 1-wise independent (i.e., not uniform).

(b) Now suppose we extend the matrix method to be defined as

h (x ) = Ax + c mod 2

where c ∈ {0, 1}b is a random binary vector.

Prove that this extension of the matrix method is pairwise independent.

3. (A String Matching Oracle) In this recitation we generalize the fingerprinting method
described in lecture. Let T = t0, t1, . . . , tn−1, be a string over some alphabetΣ= {0, 1, . . . , z−
1}. Let Ti , j denote the substring ti , ti+1, . . . , t j−1. This string is of length j − i . We want to
preprocess T such that the following comparison of two substrings of T of length ℓ can
be answered (with a low probability of a false positive) in constant time:

Test if Ti ,i+ℓ = Tj , j+ℓ

First of all let’s define the fingerprinting function. Let p be a prime, along with a base b
(larger than the alphabet size). The Karp-Rabin fingerprint of T is

h (T ) = (t0b n−1+ t1b n−2+ · · ·+ tn−1b 0)mod p

From now on we will omit the mod p from these expressions.

2



Now, to preprocess the string T , we will compute the following arrays for 0≤ i ≤ n :
(Don’t forget we are omitting the mods!)

r [i ] = b i

a [i ] = t0b i−1+ t1b i−2+ · · ·+ ti−1b 0

(a) Give algorithms for computing these in time O (n ):

(b) Find an expression for h (Ti , j ).

So the end result is that we can test if Ti ,i+ℓ = Tj , j+ℓ by comparing h (Ti ,i+ℓ) with h (Tj , j+ℓ).
The probability of a false positive can be made as small as desired by picking a suf-
ficiently large random prime p , as seen in lecture. (Here we are not concerned with
bounding the false positive probability.)

4. (Optional: Palindrome Counting) Given a text T ∈ Σn represented as an array of char-
acters, devise an algorithm to count the number of substrings of T that are palindromes
in O (n log n ) time with error rate at most some given ε> 0.

(a) Find a way to check in O (1) if a given substring Ti , j is a palindrome (with high prob-
ability). You can use O (n ) preprocessing time.

3



(b) Now, find the number of palindromic substrings of T . (Hint: If Ti , j is a palindrome,
then what other substrings do we know are palindromes?)

Fun fact: This problem can be solved deterministically (without hashing) in O (n ) using
Manacher’s Algorithm.

4


