## 15-451/651 Algorithm Design & Analysis, Fall 2023 Recitation #2

## **Objectives**

- Learn about k-wise independent hashing and practice proving it
- Understand the technique of *fingerprinting* and apply it to solve string problems

## **Recitation Problems**

1. (*k*-wise Independent Hashing) Recall from class that a hash family  $\mathcal{H}$  is *k*-wise independent if for all *k* distinct keys  $x_1, x_2, \ldots, x_k \in \mathcal{U}$  and every set of *k* values  $v_1, v_2, \ldots, v_k \in \{0, 1, \ldots, m-1\}$ , we have that

$$\Pr_{h\in\mathcal{H}}[h(x_1)=v_1\wedge h(x_2)=v_2\wedge\cdots\wedge h(x_k)=v_k]=\frac{1}{m^k}$$

Intuitively, this means that if you look at only up to k keys, the hash family appears to hash them truly randomly.

(a) Is this hash family from  $U = \{a, b\}$  to  $\{0, 1\}$  (i.e., m = 2) universal? one-wise independent (i.e., uniform)? how about pairwise independent?

$$egin{array}{c|ccc} & a & b \\ \hline h_1 & 0 & 0 \\ h_2 & 1 & 0 \\ \hline \end{array}$$

(b) Can you fill in the blanks in this hash family with values in {0, 1} to make it pairwise independent? 3-wise independent?

$$egin{array}{c|cccc} & a & b & c \\ \hline h_1 & 0 & 0 & & \\ h_2 & & & 1 \\ h_3 & 0 & & & \\ h_4 & 1 & 1 & 0 \\ \hline \end{array}$$

2. **(Extended Matrix Method)** In lecture we covered the *matrix method* of hashing integers by interpreting them as binary vectors from the universe  $\mathcal{U} = \{0,1\}^w$ , into a table of size  $m = 2^b$  indexed by  $\{0,1\}^b$  where each hash function in the family is defined by a random matrix  $A \in \{0,1\}^{b \times w}$  and

$$h(x) = Ax \mod 2$$

1

| (a) F | Prove that the | matrix metho | d is not 1- | wise indepe | endent (i.e., | not uniform). |
|-------|----------------|--------------|-------------|-------------|---------------|---------------|
|-------|----------------|--------------|-------------|-------------|---------------|---------------|

(b) Now suppose we extend the matrix method to be defined as

$$h(x) = Ax + c \mod 2$$

where  $c \in \{0, 1\}^b$  is a random binary vector.

Prove that this extension of the matrix method is pairwise independent.

3. **(A String Matching Oracle)** In this recitation we generalize the fingerprinting method described in lecture. Let  $T = t_0, t_1, \ldots, t_{n-1}$ , be a string over some alphabet  $\Sigma = \{0, 1, \ldots, z-1\}$ . Let  $T_{i,j}$  denote the substring  $t_i, t_{i+1}, \ldots, t_{j-1}$ . This string is of length j-i. We want to preprocess T such that the following comparison of two substrings of T of length  $\ell$  can be answered (with a low probability of a false positive) in constant time:

Test if 
$$T_{i,i+\ell} = T_{j,j+\ell}$$

First of all let's define the fingerprinting function. Let p be a prime, along with a base b (larger than the alphabet size). The Karp-Rabin fingerprint of T is

$$h(T) = (t_0 b^{n-1} + t_1 b^{n-2} + \dots + t_{n-1} b^0) \mod p$$

From now on we will omit the mod p from these expressions.

Now, to preprocess the string T, we will compute the following arrays for  $0 \le i \le n$ : (*Don't forget we are omitting the* mod s!)

$$r[i] = b^{i}$$
  
 $a[i] = t_{0}b^{i-1} + t_{1}b^{i-2} + \dots + t_{i-1}b^{0}$ 

(a) Give algorithms for computing these in time O(n):

(b) Find an expression for  $h(T_{i,j})$ .

So the end result is that we can test if  $T_{i,i+\ell} = T_{j,j+\ell}$  by comparing  $h(T_{i,i+\ell})$  with  $h(T_{j,j+\ell})$ . The probability of a false positive can be made as small as desired by picking a sufficiently large random prime p, as seen in lecture. (Here we are not concerned with bounding the false positive probability.)

- 4. **(Optional: Palindrome Counting)** Given a text  $T \in \Sigma^n$  represented as an array of characters, devise an algorithm to count the number of substrings of T that are palindromes in  $O(n \log n)$  time with error rate at most some given  $\epsilon > 0$ .
  - (a) Find a way to check in O(1) if a given substring  $T_{i,j}$  is a palindrome (with high probability). You can use O(n) preprocessing time.

| (b) Now, find the number of palindromic substrings of $T$ . (Hint: If $T_{i,j}$ is a palindrome then what other substrings do we know are palindromes?) |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                         |
|                                                                                                                                                         |
|                                                                                                                                                         |
|                                                                                                                                                         |
| Fun fact: This problem can be solved deterministically (without hashing) in $O(n)$ using Manacher's Algorithm.                                          |
|                                                                                                                                                         |
|                                                                                                                                                         |
|                                                                                                                                                         |
|                                                                                                                                                         |
|                                                                                                                                                         |
|                                                                                                                                                         |
|                                                                                                                                                         |
|                                                                                                                                                         |
|                                                                                                                                                         |
|                                                                                                                                                         |
|                                                                                                                                                         |