15-451/651 Algorithm Design & Analysis, Fall 2023

Recitation #2

Objectives
* Learn about k-wise independent hashing and practice proving it

* Understand the technique of fingerprinting and apply it to solve string problems

Recitation Problems

1. (k-wise Independent Hashing) Recall from class that a hash family /¢ is k-wise inde-
pendent if for all k distinct keys x;, x,, ..., X, € % and every set of k values vy, v,..., U €
{0,1,..., m—1}, we have that

1

hg{ﬁ[h(xl): NAR(X)=v, A~ ANh(x) = v] = Py

Intuitively, this means that if you look at only up to k keys, the hash family appears to
hash them truly randomly.

(@) Is this hash family from U = {a, b} to {0, 1} (i.e., m = 2) universal? one-wise inde-
pendent (i.e., uniform)? how about pairwise independent?
b

I 0
0

h,

— O

(b) Canyou fill in the blanks in this hash family with values in {0, 1} to make it pairwise
independent? 3-wise independent?

a b c
h, |0 0O
h, 1
hy | 0
hy |1 1 0

2. (Extended Matrix Method) In lecture we covered the matrix method of hashing integers
by interpreting them as binary vectors from the universe % = {0,1}*, into a table of size
m = 2% indexed by {0, 1}” where each hash function in the family is defined by a random
matrix A € {0,1}*** and
h(x)=Ax mod?2

1

(a) Prove that the matrix method is not 1-wise independent (i.e., not uniform).

(b) Now suppose we extend the matrix method to be defined as
h(x)=Ax+c mod 2

where c € {0,1}" is a random binary vector.

Prove that this extension of the matrix method is pairwise independent.

3. (A String Matching Oracle) In this recitation we generalize the fingerprinting method
describedinlecture. Let T = t,, t,,..., t,_;, be astring over some alphabet > = {0, 1,..., z—
1}. Let T; ; denote the substring ¢;, t;,,, ..., £;_;. This string is of length j —i. We want to
preprocess T such that the following comparison of two substrings of T of length ¢ can
be answered (with a low probability of a false positive) in constant time:
Testif T; ;0 = Tj e

First of all let’s define the fingerprinting function. Let p be a prime, along with a base b
(larger than the alphabet size). The Karp-Rabin fingerprint of T is

WT)=(teb" ' +1;b"*+---+ 1, ;b)Y mod p

From now on we will omit the mod p from these expressions.

Now, to preprocess the string T, we will compute the following arrays for 0 <i < n:
(Don'’t forget we are omitting the mods!)

rli] = b’
a[i] = tobi_1+t1bi_2+"'+ ti_lbo

(@) Give algorithms for computing these in time O(n):

(b) Find an expression for h(T; ;).

So the end result is that we can test if T; ; , = T; ;,, by comparing h(T; ;,,) with h(T; ;).
The probability of a false positive can be made as small as desired by picking a suf-
ficiently large random prime p, as seen in lecture. (Here we are not concerned with
bounding the false positive probability.)

. (Optional: Palindrome Counting) Given a text T € X" represented as an array of char-
acters, devise an algorithm to count the number of substrings of T that are palindromes
in O(nlogn) time with error rate at most some given € > 0.

(a) Find away to checkin O(1)if a given substring T; ; is a palindrome (with high prob-
ability). You can use O(n) preprocessing time.

(b) Now, find the number of palindromic substrings of T'. (Hint: If T; jisa palindrome,
then what other substrings do we know are palindromes?)

Fun fact: This problem can be solved deterministically (without hashing) in O(n) using
Manacher’s Algorithm.

