15-451/651 Algorithm Design & Analysis, Fall 2023
Recitation #11

Objectives

e Understand the objective of an online algorithm, how to create one, and how to bound its
competitive ratio.

* Practice common techniques for geometric algorithms.

Recitation Problems

1. (Favoritism) You're given a rooted, unweighted tree T of n nodes (not necessarily a bi-
nary tree, or a balanced tree). For each node in the tree, one of the children of that node
is designated as the “favorite child”. Initially the left-most children are all favorites, but
they may change over time.

We want to perform a sequence of Traverse(x) operations. The Traverse(x) opera-
tion traverses the path from the root of the tree to the node x (assume that the algorithm
knows the path it needs to take in order to get from the root to x). The cost of a traversal
is the number of nodes visited (not counting the root), except that visiting a favourite
child is free!

To help improve the cost, the algorithm is allowed to change the favorite child of any
node atany time. Changing the favorite child of anode costs one. Consider the following
greedy online algorithm: before performinga traversal, make all of the nodes on the path
the favourite child of their parent if they are not already.

Prove that this algorithm is 2-competitive, that is, it incurs a cost at most double that of
an optimal omniscient algorithm that can see the future and plan ahead.






2. (Move to Front with Linked Lists) Recall the List Update problem from lecture. We begin
with a list of nn items 1,2, ..., n stored in a linked list and have the following operations:

* Access(x): Accesses item x. This cost is the position of x.
* Swap(k): Swaps adjacent elements at positions k and k + 1. This costs 1.

We now extend our linked-list functionality with a new operation MoveForward defined
as:

* MoveForward(x, k): After accessing element x, move it to any position k in front
ofit, i.e. k <pos(x). This has no cost.

Using only these operations, our goal is to devise an online-algorithm thatis 2-competitive.
(a) Consider the following possible algorithms:

» MTF (Move to Front): After accessing the x™ element, move it all the way to
the very front of the list

* MoTF (Move One to Front): After accessing the x™ element, move it one posi-
tion forward in the list

* Frequency Count: Keep the list sorted with respect to frequency. (The highest
frequency is in the front.)

Show why MoTF and Frequency Count are not 2-competitive by providing a se-
quence of m bad accesses alongisde an offline solution.



(b) We'll choose to stick with MTF now. Inlecture, we showed that MTF was 4-competitive
for the original List Update problem. Given our new MoveForward operation, show

that MTF is now 2-competitive for this variant of the problem (Hint: use a potential
function).






3. (Angular sorting without angles) Recall that the first step of the Graham scan algorithm
for convex hull that we learned in lectures is to sort the points with respect to their angle
from the bottom-most point. The most straightforward way to do this is of course to
simply compute the angles and then sort the points. This has some drawbacks, such as
having to perform floating-point computations that are susceptible to rounding errors.

Given a set of n points with integer-valued coordinates, describe how to sort them with
respect to their angle to the bottom-most point without using any floating-point com-
putations. (Hint: use the line-side test primitive).



