
15-451/651 Algorithm Design & Analysis

Fall 2022, Recitation #8

Objectives

• To review zero-sum games and how to determine their values and optimal strategies.

• To practice constructing the dual of a linear program.

• To explore the primal and dual relationship in classic graph problems.

Recitation Problems

1. (Practice with Zero-sum Games)

(a) Consider a zero-sum game with payoffs:

A B

row 1 (2,−2) (−1, 1)

player 2 (−3, 3) (4,−4)

Find the minimax optimal strategies for both players and the value of the game.
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(b) Now consider the game with payoffs:

column player

A B

row 1
(
−1

2
, 1
2

)
(−1, 1)

player 2 (1,−1)
(
2
3
,−2

3

)
Find the minimax optimal strategies for both players and the value of the game.
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2. (Duality Practice) Given a primal LP

maximize cTx

s.t. Ax ≤ b

x ≥ 0

its dual is:

minimize yT b

s.t. yTA ≥ cT

y ≥ 0

For example, given

maximize 3x1 + 6x2 + x3

s.t. x1 + x2 + x3 ≤ 5

6x1 + 3x2 + 3x3 ≤ 45

2x1 + x2 + x3 ≤ 3

x1, x2, x3 ≥ 0

What is the dual?
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3. (Duality in graph problems) Recall that a vertex cover of a graph G = (V,E) is
a subset of the vertices such that every edge in E is adjacent to at least one of the
vertices in the subset. The minimum vertex cover is a vertex cover with the fewest
possible vertices.

(a) Write down a linear program for the vertex cover problem. You might need to
make an assumption. What is not quite exact about this LP?

(b) Write down the dual of this LP. What does it mean?

(c) Based on your answer to Part (a), which of the following are true, and why?

□ For any graph G, size of minimum vertex cover = size of maximum matching

□ For any graph G, size of minimum vertex cover ≤ size of maximum matching

□ For any graph G, size of minimum vertex cover ≥ size of maximum matching
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4. (Seidel’s situations) Consider the deterministic version of Seidel’s 2D linear pro-
gramming algorithm.

(a) Describe a family of constraints that will lead to the best-case behaviour for the
algorithm. Your family should not contain any redundant (parallel) constraints.

(b) Describe a family of constraints that will lead to the worst-case behaviour of the
algorithm. Your family should not contain any redundant (parallel) constraints.
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Further Review

1. (Short answer / multiple choice)

(a) Which of the following algorithms solve a linear program in polynomial time?

□ The Simplex Algorithm

□ The Ellipsoid Algorithm

□ Karmarkar’s Algorithm

□ Seidel’s Algorithm

(b) What is the dual of this linear program?

minimize 2y1 − 3y2

s.t. y1 − 4y2 ≥ 6

3y1 + 2y2 ≤ 4

y1, y2 ≥ 0

(c) Convert this LP into standard form

minimize x1 − 5x2 + 3x3

s.t. 5x1 + 4x2 − x3 ≥ 6

3x1 + 2x2 + x3 ≤ 4

x1, x2 ≥ 0

(d) Convert the following LP to standard form, and then write its dual.

minimize − x1 + 2x2

x1 ≤ 9

3x2 + x1 ≥ 14

(e) Suppose we have a primal LP with an objective coefficient vector c and it’s dual
with objective coefficient vector b. We then find an assignment x that satisfies the
primal and an assignment y that satisfies the dual. Select the strongest statement
that must be true.

□ cTx = bTy

□ cTx ≤ bTy

□ cTx ≥ bTy

2. (Another 2-Row Game) Suppose the row pay-off matrix is given as such:

A B C D
1 3 2 1 3
2 4 1 3 0
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(a) What is the optimal strategy for the row player?

(b) What is the optimal strategy for the column player?

3. (Rock-Paper-Scissors with a Twist)

Suppose we have a non-standard game of rock-paper-scissors, which is still zero-sum,
but with the following payoffs for the row player (Alice):

Alice plays

Bob plays
r p s

r 0 −1 2
p 1 0.5 −1
s −1 2 −1

If Alice decides to play p = (p1, p2, 1− p1 − p2) as her strategy, what should Bob play
to minimize the payoff to Alice? What is Alice’s payoff if he does this?

4. (Shortest paths as an LP) You can code up the s-t shortest-path problem as an LP.
Actually there are multiple ways of doing it, so lets look at two of them! The input is
a directed graph G with edge weights w(e) ≥ 0, start node s, and a target t. We want
to find a path from s to t of least weight.

First method: Vertex variables. Suppose we have a variable dv for every vertex
v, representing its distance from s.

(a) What are the constraints you should write in terms of the d variables?

(b) What is the objective function in terms of the d variables? (Hint: counter-
intuitively, you actually want to maximize, not minimize)

Second method: Edge variables. Suppose we have a variable fe for each edge
e, where 0 ≤ fe ≤ 1. We want these variables to represent which edges are on the
shortest path and which are not (imagine we want fe = 1 if e is on the shortest path,
and fe = 0 if not). Another way to say this is that we can think of fe like a flow on
the edges e, and our goal is to send a unit of flow from s to t along the shortest path.

(c) Keeping in mind that the fe variables should behave like a flow, write down some
suitable constraints.

(d) What is a suitable objective function for the problem?

(e) Do you have to make any assumptions about the nature of the solution for this
to work? You are not required to prove these, but you should clearly state what
you need to assume.

Duality. Lastly, lets see how duality comes into play.

(f) Take the dual of the first linear program (the one with vertex variables). What
do you get?

5. (Maximum-flow, minimum-what?) Let G = (V,E) be a directed graph with edge
capacities c(u, v) for (u, v) ∈ E. Recall from lecture that the max-flow problem can be
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written as an LP. Defining a flow variable fuv representing f(u, v) for every (u, v) ∈ E,
we have the LP

maximize
∑

(s,u)∈E

fsu −
∑

(u,s)∈E

fus. (the net s-t flow)

s.t.
∑
v s.t.

(v,u)∈E

fvu −
∑
v s.t.

(u,v)∈E

fuv = 0. for all u /∈ {s, t} (flow conservation)

0 ≤ fuv ≤ c(u, v) for all (u, v) ∈ E (capacity constraints)

In standard form, this becomes

maximize
∑

(s,u)∈E

fsu −
∑

(u,s)∈E

fus. (the net s-t flow)

s.t.
∑
v s.t.

(v,u)∈E

fvu −
∑
v s.t.

(u,v)∈E

fuv ≤ 0 for all u /∈ {s, t}, (flow conservation)

∑
v s.t.

(u,v)∈E

fuv −
∑
v s.t.

(v,u)∈E

fvu ≤ 0 for all u /∈ {s, t}, (flow conservation)

fuv ≤ c(u, v) for all (u, v) ∈ E, (capacity constraints)

fuv ≥ 0 for all (u, v) ∈ E, (capacity constraints)

Now that this LP is in standard form, we can apply our usual rules to take the dual.

(a) What is the dual of this problem?

(b) Simplify the dual LP as much as possible, which will involve making it not stan-
dard form. Hints:

- Remember that when we learned how to convert arbitrary LPs into standard
form, we made substitutions like switching unbounded variables x with two
non-negative variables x+−x−. You might be able to simplify the resulting LP
by doing the opposite.

- s and t are special cases (they don’t have conservation constraints) which means
they will also end up as special cases in the dual. Creating some extra variables
for them will help to eliminate redundant constraints.

(c) Intuit that this corresponds to min-cut. If you assume you get an integer solution
to this LP, describe what the variables and their values represent, and how each
constraint forces the solution to be a minimum cut. It is possible to prove that
you actually always will get an integer solution, but its a hard proof, so we won’t
do it.
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