15-451/651 Algorithm Design & Analysis
Fall 2022, Recitation #2

Objectives
e Practice deriving data structures with good amortized bounds
e Practice using potential functions to determine amortized bounds
e Understand splay trees and how to implement standard operations with them

e Understand the main tool used to analyze Splay Trees: the Access Lemma

Recitation Problems

1. (Set with choice) Your favorite programming language has an API for maintaining
a stack that supports (among others) the following operations:

e top(): Returns the top element of the stack. The stack must be non-empty.
e pop(): Removes the top element of the stack. The stack must be non-empty.
e push(z): Pushes x onto the top of the stack.

It also has the following API for a set:

e member(z): Returns true if x is in the set, false otherwise.
e insert(x): Inserts x into the set (does nothing if x is already there).

o delete(x): Deletes 2 from the set (does nothing if is not there).

For the purposes of this problem, all of the above API functions on the set and the
stack take 1 unit of time.

As you’re writing a program, you realize that you also need the following operation on
non-empty sets:

e getone(): This returns some element of the set (which must be non-empty). It doesn’t matter
which element is returned — just something in the set.

You cleverly realize that by using a set and a stack, and replacing insert(z) with your
own version called myInsert(z), then you can then implement getone(). (member()
and delete(r) will stay the same.) In your implementation all of the operations will
have constant amortized cost. Here the cost measure is the number of calls to the set
and stack API operations listed above.

(a) Assume that the stack and the set are initially empty. And assume that the
program calling this API never calls getone() on an empty set. Write pseudo-
code implementations of the operations.

(b) Prove that the operations take amortized constant time, and state specifically
what these constants are.

2. (Inserting into a splay tree) Consider inserting a new element into a splay tree

(a) What is not ideal about using the ordinary BST (without self-balancing) insertion
algorithm?

(b) Consider the following alternative algorithm for inserting a new clement e: Start
by searching for the parent that e would have if it were inserted using the ordinary
BST insertion algorithm, call it p, then splay p to the root. The tree now looks
like (L, p, R), where p is the root node that was just splayed, L is the left subtree,
and R is the right subtree. If e < p, then join the trees (L, e) and (p, R), otherwise
join the trees (L, p) and (e, R), as per the following diagram.

p e e
/ \ / \ / \
L R —====> p R OR L p
/ \
L R

Prove that the amortized cost of this insertion algorithm is O(logn).

(¢) Give an O(logn) amortized algorithm for deleting a node from a splay tree

3. (Splaying red and blue) Consider a splay tree with n + m nodes where n are red
and m are blue. Choose weights and use the Access Lemma to prove the following

(a) Amortized number of splay steps done when a red node is accessed is 4 + 3logn

(b) Amortized number of splay steps done when a blue node is accessed is 4 4+ 3 logm

Extra thing to think about: if there are very few red items, then we can give a very

tight amortized bound on accessing them, even though the algorithm has no idea what
is and what isn’t a red node. Can you explain why this is true?

Further review

1. (Short answer / multiple choice)

(i)

(iii)

In the game of Fizzbin there are two operations: fizz and bin. Fizz involves
putting a card on a stack, and costs 1. Bin involves taking all cards off the stack
and has cost equal to the size of the stack plus 1, which is the same as the number
of fizz operations since the most recent bin, plus 1

For example, the sequence of operations: fizz, bin, fizz, fizz, bin, bin, fizz would
cost 1,2,1,1,3,1,1. Which of the following is the tightest correct upper bound on
the amortized cost per operation in a worst-case sequence of n operations?

Consider a sequence of operations, where the i*" operation costs [lgi]. Mark the
best upper bound in terms of n on the amortized cost per operation of a sequence
of n operations from the choices below:

) O(1)

) O(lglgn)
(c) O(lgn)
(d) O((lgn)?)
(e) O(n)

In lecture we considered the amortized cost of array resizing, where the cost to
resize an array from size S to size S’ was S. (We assume we start from an empty
array.) We considered the strategy where S" = 2.5 and showed that the amortized
cost of a sequence of n appends was at most 3. Now suppose the cost of resize
becomes kS for some k > 0, all other costs remain the same as in lecture. Choose

the best upper bound on the amortized cost per operation for a sequence of n
appends from the options below.

(a) 3
(b) k+2
(c) 2k—|—1
(d) 3
(e) 3

Now, consider the strategy where you triple the size of the array once it is full,
i.e., " =35. Choose the best upper bound on the amortized cost per operation
for a sequence of n pushes from the options below.

(a) 2.5

(a
(b

(vii)

(viii)

Which of the splay steps distinguishes splaying from just rotating the accessed
element to the top:

(a) zig

(b) zig-zag

(c) zig-zig

(d) none of the above

If each node in a splay tree with n nodes has unit weight (w(z) = 1), then the
maximum size of any node is

(a) ©(1)

(b) ©(log™n)
(c) ©(loglogn)
(d) ©(logn)
(e) ©(n)

Consider a complete balanced binary search tree T' of n = 255 nodes with height
8. In splay tree terminology, a node x that is at depth d from the root (the root
node has depth 0) is assigned weight w(x) = 2779, What is the maximum rank
of a node in 777

Let z be a node in a splay tree, with y as parent and z as grandparent. Let r, be
the rank of x and r, be the rank of z. Suppose we perform a single splay step at
x. Let r!, be the new rank of z and 7, be the new rank of z. Then it must be the
case that r, =17,

(a) True

(b) False

Let x be a node in a splay tree, with y as parent and z as grandparent. Let r, be
the rank of x and r, be the rank of z. Suppose we perform a single splay step at
x. Let 7/, be the new rank of z and 7/, be the new rank of z. Then it must be the
case that rl, =r,.

(a) True

(b) False

. (Binary Counter Revisited) Suppose we are incrementing a binary counter, but
instead of each bit flip costing 1, suppose flipping the ' bit costs us 2¢. (Flipping the
lowest order bit A[0] costs 2° = 1, the next higher order bit A[1] costs 2! = 2, the
next costs 22 = 4, etc.) What is the amortized cost per operation for a sequence of n
increments, starting from zero?

. (Ternary Counter) Suppose that instead of a binary counter, we maintain a ternary
counter such that incrementing each digit still costs one.

(a) What is the total cost of a sequence of n increments starting from zero?
(b) Define a suitable potential function for analyzing the cost of each increment

(¢) Use your potential function to determine the amortized cost per increment and
show that this matches the cost you got in Part 3a.

. (Simulating a queue) A stack supports “push x” and “pop” and each operation has
a cost of 1. Show how to implement a queue that supports enqueue and dequeue using
two stacks. Prove using a potential function that the amortized cost of enqueue is 3
and the amortized cost of dequeue is 1.

. (Balls in bins) There are n balls and an infinite number of bins. A bin can have 0 or
more balls in it. A move consists taking all the balls of some bin and putting them into
distinct bins. The cost of a move is the number of balls moved. Define the potential
of a state of this system as the sum of the potentials of all the bins. The potential of
a bin with £ balls in it is:

O (k) = max(0,k — 2)

Where for convenience z = |y/n]. Prove that the amortized cost of a move is at most
2z.

. (Cyclic Splaying) Starting from a tree Ty of n nodes a sequence of ¢ > 1 splay
operations is done. It turns out that the initial tree Ty and the final tree T; are the
same. Let k be the number of distinct nodes splayed in this sequence. (Clearly k& < £.)
Below is an example where k = ¢ = 4 and n = 6.

4 3 0 5 4
/\ /\ \ / /\
2 5 splay(3) 2 4 splay(0) 2 splay(5) 2 splay(4) 2 5
/\ =========> / \ =ssss====> /\ s==s=====3 /\ s===s====> / \
0 3 0 5 1 3 / \ 0 3
\ \ \ / \ \
1 1 4 0 4 1
\ \ /
5 1 2

Use some setting of node weights to show that the average number of splaying steps
in this cycle (i.e., the average per splay operation) is at most 1 + 3log, n. Make use
of the Access Lemma for splay trees covered in lecture yesterday.

. (Cyclic splaying even faster) Recall the cyclic splaying problem from above. Use
a different setting of node weights to show that the average number of splaying steps
in this cycle (per splay operation) is at also most 1 + 3log, k.

. (Spray paint) At the FTW Motor Company, there’s an infinite line of cars, each of
which are initially colored white. Associate the cars with the integers, both positive
and negative. Management sends the paint crew a sequence of Spray commands: each
command is of the form Spray(z,y,c) (where z < y), which requires spray-painting

8

all the cars/integers in the interval [z, y] with the color ¢. The cost of each operation
Spray(z,y, ¢) is the number of distinct colors in the range [x,y] before the operation
is performed.

(a) Show using a potential function that the cost of N paint operations is at most
3N.

(b) Show that any constant less than 3 would not work.

