- RAMDOM RELATIOMSHIP

Let X and Y be discrete random variables with a natural (\mathbb{N}), finite ranges. X and Y are also independent. Recall that X and Y are independent random variables if and only if...

$$
\mathbb{P}(X=x \cap Y=y)=\mathbb{P}(X=x) \cdot \mathbb{P}(Y=y)
$$

Let $Z=X+Y$. Derive a expression for $\mathbb{P}(Z=z)$ for an arbitrary value z.
(Hint: express a random variable as a polynomial)

- RAMDOM RELATIOMSHIP

Let X and Y be discrete random variables with a natural (\mathbb{N}), finite ranges. X and Y are also independent. Recall that X and Y are independent random variables if and only if...

$$
\mathbb{P}(X=x \cap Y=y)=\mathbb{P}(X=x) \cdot \mathbb{P}(Y=y)
$$

Let $Z=X+Y$. Derive a expression for $\mathbb{P}(Z=z)$ for an arbitrary value z.
(Hint: express a random variable as a polynomial)

*i know you haven't done this in a while BUT. it's not seary... i promise ic

- RAMDOM RELATIOMSHIP

Let X and Y be discrete random variables with a natural (\mathbb{N}), finite ranges. X and Y are also independent. Recall that X and Y are independent random variables if and only if...

$$
\mathbb{P}(X=x \cap Y=y)=\mathbb{P}(X=x) \cdot \mathbb{P}(Y=y)
$$

Let $Z=X+Y$. Derive a expression for $\mathbb{P}(Z=z)$ for an arbitrary value z.
(Hint: express a random variable as a polynomial)

```
*i know you haven't done this in a while BUT. it's not seary... i promise ic
```

SMALG EXAMPLES SAVE THE DAY!

- RAMDOM RELATIOMSHIP

Let X and Y be discrete random variables with a natural (\mathbb{N}), finite ranges. X and Y are also independent. Recall that X and Y are independent random variables if and only if...

$$
\mathbb{P}(X=x \cap Y=y)=\mathbb{P}(X=x) \cdot \mathbb{P}(Y=y)
$$

Let $Z=X+Y$. Derive a expression for $\mathbb{P}(Z=z)$ for an arbitrary value z.
(Hint: express a random variable as a polynomial)

SMALL EXAMPLES SAVE THE DAY!

- RAMDOM RELATIOMSHIP

Let X and Y be discrete random variables with a natural (\mathbb{N}), finite ranges. X and Y are also independent. Recall that X and Y are independent random variables if and only if...

$$
\mathbb{P}(X=x \cap Y=y)=\mathbb{P}(X=x) \cdot \mathbb{P}(Y=y)
$$

Let $Z=X+Y$. Derive a expression for $\mathbb{P}(Z=z)$ for an arbitrary value z.
(Hint: express a random variable as a polynomial)

SMALL EXAMPLES SAVE THE DAY!

- RAMDOM RELATIOMSHIP

Let X and Y be discrete random variables with a natural (\mathbb{N}), finite ranges. X and Y are also independent. Recall that X and Y are independent random variables if and only if...

$$
\mathbb{P}(X=x \cap Y=y)=\mathbb{P}(X=x) \cdot \mathbb{P}(Y=y)
$$

Let $Z=X+Y$. Derive a expression for $\mathbb{P}(Z=z)$ for an arbitrary value z.
(Hint: express a random variable as a polynomial)

SMALL EXAMPLES SAVE THE DAV!

- RAMDOM RELATIOMSHIP

Let X and Y be discrete random variables with a natural (\mathbb{N}), finite ranges. X and Y are also independent. Recall that X and Y are independent random variables if and only if...

$$
\mathbb{P}(X=x \cap Y=y)=\mathbb{P}(X=x) \cdot \mathbb{P}(Y=y)
$$

Let $Z=X+Y$. Derive a expression for $\mathbb{P}(Z=z)$ for an arbitrary value z.
(Hint: express a random variable as a polynomial)

SMALE EXAMPLES SAVE THE DAY!

What is the probability
of each outcome?

I RAMOOM RELATIONSHIP

Let X and Y be discrete random variables with a natural (\mathbb{N}), finite ranges. X and Y are also independent. Recall that X and Y are independent random variables if and only if...

$$
\mathbb{P}(X=x \cap Y=y)=\mathbb{P}(X=x) \cdot \mathbb{P}(Y=y)
$$

Let $Z=X+Y$. Derive a expression for $\mathbb{P}(Z=z)$ for an arbitrary value z.
(Hint: express a random variable as a polynomial)

SMALL EXAMPLES SAVE THE DAY!

- RAMDOM RELATIOMSHIP

Let X and Y be discrete random variables with a natural (\mathbb{N}), finite ranges. X and Y are also independent. Recall that X and Y are independent random variables if and only if...

$$
\mathbb{P}(X=x \cap Y=y)=\mathbb{P}(X=x) \cdot \mathbb{P}(Y=y)
$$

Let $Z=X+Y$. Derive a expression for $\mathbb{P}(Z=z)$ for an arbitrary value z.
(Hint: express a random variable as a polynomial)

SMALE EXAMPLES SAVE THE DAY!

I RAMOOM RELATIONSHIP

Let X and Y be discrete random variables with a natural (\mathbb{N}), finite ranges. X and Y are also independent. Recall that X and Y are independent random variables if and only if...

$$
\mathbb{P}(X=x \cap Y=y)=\mathbb{P}(X=x) \cdot \mathbb{P}(Y=y)
$$

Let $Z=X+Y$. Derive a expression for $\mathbb{P}(Z=z)$ for an arbitrary value z.
(Hint: express a random variable as a polynomial)

SMAGL EXAMPLES SAVE THE DAY!

POLYNOMIAL

 MULTIPLIGATION

- RAMDOM RELATIOMSHIP

Let X and Y be discrete random variables with a natural (\mathbb{N}), finite ranges. X and Y are also independent. Recall that X and Y are independent random variables if and only if...

$$
\mathbb{P}(X=x \cap Y=y)=\mathbb{P}(X=x) \cdot \mathbb{P}(Y=y)
$$

Let $Z=X+Y$. Derive a expression for $\mathbb{P}(Z=z)$ for an arbitrary value z.
(Hint: express a random variable as a polynomial)
*Iet's convert x and y into polynomials and represent 8 as their multiplication.

POLYNOMIAL

MULTIPLIGATION
$E=x+y$

- RANDOM RELATIONSHIP

Let X and Y be discrete random variables with a natural (\mathbb{N}), finite ranges. X and Y are also independent. Recall that X and Y are independent random variables if and only if...

$$
\mathbb{P}(X=x \cap Y=y)=\mathbb{P}(X=x) \cdot \mathbb{P}(Y=y)
$$

Let $Z=X+Y$. Derive a expression for $\mathbb{P}(Z=z)$ for an arbitrary value z.
(Hint: express a random variable as a polynomial)

we need degrees for our polynomial
and we need coefficients

1 RAMOOM RELATIONSHIP

Let X and Y be discrete random variables with a natural (\mathbb{N}), finite ranges. X and Y are also independent. Recall that X and Y are independent random variables if and only if...

$$
\mathbb{P}(X=x \cap Y=y)=\mathbb{P}(X=x) \cdot \mathbb{P}(Y=y)
$$

Let $Z=X+Y$. Derive a expression for $\mathbb{P}(Z=z)$ for an arbitrary value z.
(Hint: express a random variable as a polynomial)

we need degrees for our polynomial
and we need coefficients

I RAMOOM RELATIONSHIP

Let X and Y be discrete random variables with a natural (\mathbb{N}), finite ranges. X and Y are also independent. Recall that X and Y are independent random variables if and only if...

$$
\mathbb{P}(X=x \cap Y=y)=\mathbb{P}(X=x) \cdot \mathbb{P}(Y=y)
$$

Let $Z=X+Y$. Derive a expression for $\mathbb{P}(Z=z)$ for an arbitrary value z.
(Hint: express a random variable as a polynomial)

I RAMOOM RELATIONSHIP

Let X and Y be discrete random variables with a natural (\mathbb{N}), finite ranges. X and Y are also independent. Recall that X and Y are independent random variables if and only if...

$$
\mathbb{P}(X=x \cap Y=y)=\mathbb{P}(X=x) \cdot \mathbb{P}(Y=y)
$$

Let $Z=X+Y$. Derive a expression for $\mathbb{P}(Z=z)$ for an arbitrary value z.
(Hint: express a random variable as a polynomial)

I RAMOOM RELATIONSHIP

Let X and Y be discrete random variables with a natural (\mathbb{N}), finite ranges. X and Y are also independent. Recall that X and Y are independent random variables if and only if...

$$
\mathbb{P}(X=x \cap Y=y)=\mathbb{P}(X=x) \cdot \mathbb{P}(Y=y)
$$

Let $Z=X+Y$. Derive a expression for $\mathbb{P}(Z=z)$ for an arbitrary value z.
(Hint: express a random variable as a polynomial)

I RANDOM RELATIONSHIP

Let X and Y be discrete random variables with a natural (\mathbb{N}), finite ranges. X and Y are also independent. Recall that X and Y are independent random variables if and only if...

$$
\mathbb{P}(X=x \cap Y=y)=\mathbb{P}(X=x) \cdot \mathbb{P}(Y=y)
$$

Let $Z=X+Y$. Derive a expression for $\mathbb{P}(Z=z)$ for an arbitrary value z.
(Hint: express a random variable as a polynomial)

"we wont prove this ra... but it's not bad!

- RANDOM RELATIONSHIP

Let X and Y be discrete random variables with a natural (\mathbb{N}), finite ranges. X and Y are also independent. Recall that X and Y are independent random variables if and only if...

$$
\mathbb{P}(X=x \cap Y=y)=\mathbb{P}(X=x) \cdot \mathbb{P}(Y=y)
$$

Let $Z=X+Y$. Derive a expression for $\mathbb{P}(Z=z)$ for an arbitrary value z.
(Hint: express a random variable as a polynomial)

* now for our expression

let $\epsilon_{k}^{N}, G_{K}^{j}, G_{k}^{z}$ be the $k^{\text {th }}$ coefficient for P_{K}, P_{V}. P_{E} respectively

"we wont prove this ra... bot it's not bad!

- RANDOM RELATIONSHIP

Let X and Y be discrete random variables with a natural (\mathbb{N}), finite ranges. X and Y are also independent. Recall that X and Y are independent random variables if and only if...

$$
\mathbb{P}(X=x \cap Y=y)=\mathbb{P}(X=x) \cdot \mathbb{P}(Y=y)
$$

Let $Z=X+Y$. Derive a expression for $\mathbb{P}(Z=z)$ for an arbitrary value z.
(Hint: express a random variable as a polynomial)

* now for our expression

let $G_{k}^{N}, G_{k}^{j}, G_{k}^{z}$ be the $k^{\text {th }}$ coefficient for P_{k}, P_{V}, P_{E} respective dy
$P(z=\ell)=c_{\ell}^{8}=$
$\left(\frac{1}{2} a^{0}+\frac{L^{c_{2}^{K}}}{c_{2}^{2}} a^{2}=P_{a}(a)\right) \cdot\left(\frac{3}{4} a^{3}+\frac{1}{4} a^{c_{3}^{y}}=P_{y}(a)\right)=\frac{3}{3} a^{3}+\frac{a}{a} a^{a}+\frac{1}{b} a^{3}=P_{y}(a)$
"we wont prove this ra... bot it's not bad!

- RANDOM RELATIONSHIP

Let X and Y be discrete random variables with a natural (\mathbb{N}), finite ranges. X and Y are also independent. Recall that X and Y are independent random variables if and only if...

$$
\mathbb{P}(X=x \cap Y=y)=\mathbb{P}(X=x) \cdot \mathbb{P}(Y=y)
$$

Let $Z=X+Y$. Derive a expression for $\mathbb{P}(Z=z)$ for an arbitrary value z.
(Hint: express a random variable as a polynomial)

* now for our expression

$$
\begin{aligned}
& \text { let } c_{k}^{N}, G_{K}^{V}, G_{k}^{i} \text { be the } k^{\text {th }} \text { cesefficient for } P_{k}, P_{V}, P_{s} \text { respectively } \\
& P(\varepsilon=\ell)=c_{\ell}^{z}=\sum c_{i}^{R} \cdot c_{\ell-j}^{y} \\
& \text { Tosise } \\
& \text { from the deon of poly malt. in notes }
\end{aligned}
$$

$\left(\frac{1}{2} a^{0}+\frac{1}{2} a^{2}=P_{a}(a)\right) \cdot\left(\frac{3}{4} a^{2}+\frac{1}{4} a^{3} 3 P_{y}(a)\right)=\frac{3}{3} a^{3}+\frac{4}{8} a^{4}+\frac{1}{8} a^{3}=P_{y}(a)$
"we wont prove this ra... bot it's not bad!

I RANDOM RELATIONSHIP

Let X and Y be discrete random variables with a natural (\mathbb{N}), finite ranges. X and Y are also independent. Recall that X and Y are independent random variables if and only if...

$$
\mathbb{P}(X=x \cap Y=y)=\mathbb{P}(X=x) \cdot \mathbb{P}(Y=y)
$$

Let $Z=X+Y$. Derive a expression for $\mathbb{P}(Z=z)$ for an arbitrary value z.
(Hint: express a random variable as a polynomial)

* now for our expression

let $c_{k}^{x}, G_{k}^{j}, \epsilon_{k}^{z}$ be the $k^{\text {th }}$ coefficient for P_{n}, P_{V}, P_{E} respectively

substitute terms
$\left(\frac{1}{2} a^{0}+\frac{1}{2} a^{2}=P_{a}(a)\right) \cdot\left(\frac{3}{4} a^{2}+\frac{1}{4} a^{3} 3 P_{y}(a)\right)=\frac{3}{3} a^{3}+\frac{4}{8} a^{4}+\frac{1}{8} a^{3}=P_{y}(a)$
"we wont prove this ra... but it's not bad!

2 EVENGY• SPAGED OMES

Given a binary string S of length n. We wish to determine whether there exists three evenly spaced ones within S. For example, 11100000, 110110010 both have three evenly spaced 1s, while 1011 does not.

2 EVENGY• SPAGED OMES

Given a binary string S of length n. We wish to determine whether there exists three evenly spaced ones within S. For example, 11100000, 110110010 both have three evenly spaced 1s, while 1011 does not.
(a) Derive a brute-force algorithm solving this problem with $O\left(n^{2}\right)$ complexity.

2 EVENLY• SPAEED OMES

Given a binary string S of length n. We wish to determine whether there exists three evenly spaced ones within S. For example, 11100000, 110110010 both have three evenly spaced 1s, while 1011 does not.
(a) Derive a brute-force algorithm solving this problem with $O\left(n^{2}\right)$ complexity.
*there are twe parameters you need to lecate the three one's...
1.
2.

2 EVENLY SPACED ONES

Given a binary string S of length n. We wish to determine whether there exists three evenly spaced ones within S. For example, 11100000, 110110010 both have three evenly spaced 1s, while 1011 does not.
(a) Derive a brute-force algorithm solving this problem with $O\left(n^{2}\right)$ complexity.
there are two parameters you need to locate the three ene's...

1. start index
2. spacing
so what is the algorithms...?

2 EVENLY SPACED ONES

Given a binary string S of length n. We wish to determine whether there exists three evenly spaced ones within S. For example, 11100000, 110110010 both have three evenly spaced 1s, while 1011 does not.
(a) Derive a brute-force algorithm solving this problem with $O\left(n^{2}\right)$ complexity.
*there are two parameters you need to locate the three one's...

1. start index
2. spacing
se what is the algorithms...?

- try all possible comber of these... $O\left(n^{2}\right)$

2 EVENGY• SPAGED OMES

Given a binary string S of length n. We wish to determine whether there exists three evenly spaced ones within S. For example, 11100000, 110110010 both have three evenly spaced 1s, while 1011 does not.
(b) Derive an algorithm with $O(n \log n)$ complexity that uses polynomial multiplication and convolutions.

2 EVENLY• SPACED ONES

Given a binary string S of length n. We wish to determine whether there exists three evenly spaced ones within S. For example, 11100000, 110110010 both have three evenly spaced 1s, while 1011 does not.
(b) Derive an algorithm with $O(n \log n)$ complexity that uses polynomial multiplication and convolutions.

* uh...se in the last problem, we converted p.v.'s to polynemials. let's not reinvent the wheel...

2 EVENLY • SPACED OMES

Given a binary string S of length n. We wish to determine whether there exists three evenly spaced ones within S. For example, 11100000, 110110010 both have three evenly spaced 1s, while 1011 does not.
(b) Derive an algorithm with $O(n \log n)$ complexity that uses polynomial multiplicadion and convolutions.
\#uh...se in the last problem, we converted r.v.'s to polynomials. Let's not reinvent the wheel...

- what should we convert to a polynomial?
- what are the ceefs and degree?

2 EVENLY- SPACED ONES

Given a binary string S of length n. We wish to determine whether there exists three evenly spaced ones within S. For example, 11100000, 110110010 both have three evenly spaced 1s, while 1011 does not.
(b) Derive an algorithm with $O(n \log n)$ complexity that uses polynomial multiplication and convolutions.
\#uh...se in the last problem, we converted r.v.'s to polynomials. Let's not reinvent the wheel...

- what should we convert to a polynomial?
- what are the ceefs and degree?
- the binary string!
ea. 1010
- costs $=1$ er 0
${ }^{6} 1 x^{0}+0 x^{0}+1 z^{2}+1 x^{3}$
- degree $=$ index

$$
=x^{0}+x^{2}+x^{3}
$$

2 EVENLY SPACED ONES

Given a binary string S of length n. We wish to determine whether there exists three evenly spaced ones within S. For example, 11100000, 110110010 both have three evenly spaced 1s, while 1011 does not.
(b) Derive an algorithm with $O(n \log n)$ complexity that uses polynomial multiplicatron and convolutions.

- the binary string! ex. 1011
- costs $=1$ or 0

$$
\text { - degree }=\text { index }
$$

$$
\begin{aligned}
& { }^{6} 1 x^{0}+0 x^{0}+1 x^{2}+1 x^{3} \\
& =x^{0}+x^{2}+x^{3}
\end{aligned}
$$

- how does this help us? ... not so clear, let's keep exploring...
- what should we multiply this poly by? (mint: 2.sum)

2 EVENLY SPACED ONES

Given a binary string S of length n. We wish to determine whether there exists three evenly spaced ones within S. For example, 11100000, 110110010 both have three evenly spaced 1s, while 1011 does not.
(b) Derive an algorithm with $O(n \log n)$ complexity that uses polynomial multiplicatron and convolutions.

- the binary string! ex. 1011
- costar $=1$ er ${ }^{\circ}$

$$
\text { - degree }=\text { index }
$$

$$
\begin{aligned}
& 61 x^{0}+0 x^{0}+1 x^{2}+1 x^{3} \\
& =x^{0}+x^{2}+x^{3}
\end{aligned}
$$

- how does this help us? ... not so clear, let's keep exploring...
- what should we multiply this poly by?
(mint: 2 -sum)
- itself!

2 EVENLY SPACED ONES

Given a binary string S of length n. We wish to determine whether there exists three evenly spaced ones within S. For example, 11100000, 110110010 both have three evenly spaced 1s, while 1011 does not.
(b) Derive an algorithm with $O(n \log n)$ complexity that uses polynomial multiplication and convolutions.

- the binary string!

Ca. 1010
${ }^{6} 1 x^{0}+0 x^{0}+1 z^{2}+1 x^{3}$
$=x^{0}+x^{2}+x^{3}$

- how does this help us? ... not se clear, let's keep exploring...
- what should we multiply this poly by? (mont: 2.sum)
- itself! ex. $1011 \rightarrow x^{0}+2 x^{2}+2 x^{3}+x^{4}+2 x^{5}+x^{6}$ $10101 \rightarrow x^{0}+2 x^{8} \cdot 3 x^{4} \cdot 2 x^{6}+x^{8}$

2 EVENLY- SPACED ONES

Given a binary string S of length n. We wish to determine whether there exists three evenly spaced ones within S. For example, 11100000, 110110010 both have three evenly spaced 1s, while 1011 does not.
(b) Derive an algorithm with $O(n \log n)$ complexity that uses polynomial multiplicadion and convolutions.

- the binary string!

Ca. 1011
${ }^{6} 1 x^{0}+0 x^{0}+1 z^{2}+1 x^{3}$
$=x^{0}+x^{2}+x^{3}$

- how does this help us? ... not se clear, let's keep exploring...
- what should we multiply this poly by? (mont: 2-sum)
- itself! ex. $1011 \longrightarrow x^{0}+2 x^{8}+2 x^{3}+x^{4}+2 x^{8}+x^{6}$ $-0100 \longrightarrow x^{4}+2 z^{8}+z^{\circ}$
$\bullet 001$
$10101 \longrightarrow x^{0} \cdot 2 x^{4} \cdot 3 x^{4} \cdot 2 n^{0}+n^{8}$
$10000 \longrightarrow x^{0} \cdot 2 z^{8} \cdot 2 x^{2}+3 x^{4} \cdot 2 x^{8}+3 x^{6}+2 x^{0}+x^{8}$

2 EVENLY SPACED ONES

Given a binary string S of length n. We wish to determine whether there exists three evenly spaced ones within S. For example, 11100000, 110110010 both have three evenly spaced 1s, while 1011 does not.
(b) Derive an algorithm with $O(n \log n)$ complexity that uses polynomial multiplicadion and convolutions.

- how doss this help us? ... not se clear, let's keep exploring...
- what should we multiply this poly by?
(mont: 2 -sum)

$$
\begin{aligned}
& \text { - itsc16! ix. } 1011 \longrightarrow x^{0}+2 x^{2}+2 x^{3}+x^{4}+2 x^{5}+x^{6}
\end{aligned}
$$

$$
\begin{aligned}
& 10101 \longrightarrow x^{0} \cdot 2 x^{8} \cdot 3 n^{4} \cdot 2 x^{0}+x^{8} \\
& 10000 \longrightarrow x^{\circ} \cdot 2 z^{2} \cdot 2 x^{8} \cdot 3 x^{0} \cdot 2 x^{8} \cdot 3 x^{6} \cdot 2 n^{0} \cdot x^{8}
\end{aligned}
$$

notice anything interesting about the magnitude of the costs?

2 EVENLY • SPACED ONES

Given a binary string S of length n. We wish to determine whether there exists three evenly spaced ones within S. For example, 11100000, 110110010 both have three evenly spaced 1s, while 1011 does not.
(b) Derive an algorithm with $O(n \log n)$ complexity that uses polynomial multiplicadion and convolutions.

- how doss this help us? ... not se clear, let's keep exploring... - what should we multiply this poly by? (mont: 2 -sum)

$$
\begin{aligned}
& \text { - itself! ex. } 1011 \longrightarrow x^{0}+2 x^{2}+2 x^{3}+x^{4}+2 x^{5}+x^{6} \\
& \begin{array}{l}
00110 \longrightarrow x^{4}+2 x^{3}+\Sigma^{\circ} \\
0001
\end{array} \\
& 10101 \longrightarrow x^{0} \cdot 2 n^{*} \cdot 3 n^{4} \cdot 2 n^{0}+x^{8} \\
& 10000 \longrightarrow x^{\circ} \cdot 28^{8} \cdot 2 n^{8} \cdot 3 x^{0} \cdot 2 n^{8} \cdot 3 n^{6} \cdot 2 n^{0} \cdot x^{8}
\end{aligned}
$$

notice anything interesting about the magnitude of the costs? - NO \rightarrow costs $\varepsilon 2$

- YES \rightarrow Jeoofs 23

2 EVENLY • SPACED ONES

Given a binary string S of length n. We wish to determine whether there exists three evenly spaced ones within S. For example, 11100000, 110110010 both have three evenly spaced 1s, while 1011 does not.
(b) Derive an algorithm with $O(n \log n)$ complexity that uses polynomial multiplicadion and convolutions.

- how does this help us? ... not se clear, let's keep exploring... - what should we multiply this poly by? (mont: 2 -sum)

$$
\begin{aligned}
& \text { - itself! ex. } 1011 \longrightarrow x^{0}+2 x^{2}+2 x^{3}+x^{4}+2 x^{5}+x^{6} \\
& \begin{array}{l}
00110 \longrightarrow x^{4}+2 x^{8} \cdot z^{\circ} \\
\bullet 001 \longrightarrow x^{8}+2 x^{4} \text {. } x^{\circ}
\end{array} \\
& 10101 \longrightarrow x^{0} \cdot 2 x^{8} \cdot 3 n^{4} \cdot 2 x^{0}+x^{8} \\
& 10000 \longrightarrow x^{\circ} \cdot 2 x^{2} \cdot 2 n^{8} \cdot 3 x^{4} \cdot 2 x^{8} \cdot 3 n^{6} \cdot 2 n^{0} \cdot x^{8}
\end{aligned}
$$

notice anything interesting about the magnitude of the costs? - NO \rightarrow sects $\& 2$

- YES \rightarrow Jests 2 3 \rightarrow located at degree DOUBLE the scoter of ones!

2 EVENLY • SPACED ONES

Given a binary string S of length n. We wish to determine whether there exists three evenly spaced ones within S. For example, 11100000, 110110010 both have three evenly spaced 1s, while 1011 does not.
(b) Derive an algorithm with $O(n \log n)$ complexity that uses polynomial multiplicadion and convolutions.

- how does this help us? ... not se clear, let's keep exploring... - what should we multiply this poly by? (mont: 2 -sum)

$$
\begin{aligned}
& \text { - itself! ex. } 1011 \longrightarrow x^{0}+2 x^{2}+2 x^{3}+x^{4}+2 x^{5}+x^{6} \\
& \begin{array}{l}
00110 \longrightarrow x^{4}+2 x^{8} \cdot z^{\circ} \\
\bullet 001 \longrightarrow x^{8}+2 x^{4} \text {. } x^{\circ}
\end{array} \\
& 10101 \longrightarrow x^{0}+2 x^{2} \cdot 3 n^{4} \cdot 2 n^{0} \cdot x^{8} \\
& 10000 \longrightarrow x^{\circ} \cdot 2 x^{8} \cdot 2 n^{8} \cdot 3 x^{0} \cdot 2 x^{8} \cdot 3 x^{6} \cdot 2 n^{0} \cdot x^{8}
\end{aligned}
$$

notice anything interesting about the magnitude of the costs?

- NO \rightarrow cents $\& 2$ way is tho is happening?
- YES \rightarrow Jests $\mathfrak{2} \rightarrow$ located at degree DOUBLE the center of ones!

2 EVENLY • SPACED ONES
Given a binary string S of length n. We wish to determine whether there exists three evenly spaced ones within S. For example, 11100000, 110110010 both have three evenly spaced 1s, while 1011 does not.
(b) Derive an algorithm with $O(n \log n)$ complexity that uses polynomial multiplicadion and convolutions.

- how does this help us? ... not se clear, let's keep exploring... - what should we multiply this poly by? (mont: 2 -sum)

$$
\begin{aligned}
& \text { - itself! ex. } 1011 \longrightarrow x^{0}+2 x^{2}+2 x^{3}+x^{4}+2 x^{5}+x^{6} \\
& \begin{array}{l}
00110 \longrightarrow x^{4}+2 x^{8} \cdot x^{\circ} \\
\bullet 001 \longrightarrow x^{8}+2 x^{6} \text {. }
\end{array} \\
& 10101 \longrightarrow x^{0}+2 x^{2} \cdot 3 x^{\circ} \cdot 2 x^{0}+x^{8} \\
& 10100 \longrightarrow x^{\circ} \cdot 2 x^{2} \cdot 2 x^{8} \cdot 3 x^{4} \cdot 2 x^{8} \cdot 3 x^{6}+2 x^{0}+x^{8}
\end{aligned}
$$

notice anything interesting about the magnitude of the costs?

- NO \rightarrow costs $\& 2$ "suppose indices ($\mathbf{(i , j o w}$) are evenly oppose

2 EVENGY• SPAGED OMES

Given a binary string S of length n. We wish to determine whether there exists three evenly spaced ones within S. For example, 11100000, 110110010 both have three evenly spaced 1s, while 1011 does not.
(b) Derive an algorithm with $O(n \log n)$ complexity that uses polynomial multiplication and convolutions.

2 EVEMLY• SPAEED OMES

Given a binary string S of length n. We wish to determine whether there exists three evenly spaced ones within S. For example, 11100000, 110110010 both have three evenly spaced 1s, while 1011 does not.
(b) Derive an algorithm with $O(n \log n)$ complexity that uses polynomial multiplication and convolutions.

2 EVENGY• SPAGED OMES

Given a binary string S of length n. We wish to determine whether there exists three evenly spaced ones within S. For example, 11100000, 110110010 both have three evenly spaced 1s, while 1011 does not.
(b) Derive an algorithm with $O(n \log n)$ complexity that uses polynomial multiplication and convolutions.
*so, what's the algorithon?

2 EVENLY • SPACED ONES

Given a binary string S of length n. We wish to determine whether there exists three evenly spaced ones within S. For example, 11100000, 110110010 both have three evenly spaced 1s, while 1011 does not.
(b) Derive an algorithm with $O(n \log n)$ complexity that uses polynomial multiplicatron and convolutions.
\#so, what's the algerithon?

1. mate polynomial for string $O(n)$
2. square it $O(n \log n)$
3. for degree $d \in P(x)^{*}$ degrees with is
4. check coefficient of 21 in $P(x)^{2}$. if 23 , return TRUE 4. return FALSE

THANK YOU. "O
\qquad

