I ANGULAR SORTING((In........)

1. (Angular sorting without angles) Recall that the first step of the Graham scan algorithm for convex hull that we learned in lectures is to sort the points with respect to their angle from the bottom-most point. The most straightforward way to do this is of course to simply compute the angles and then sort the points. This has some drawbacks, such as having to perform floating-point computations that are susceptible to rounding errors.

Given a set of n points with integer-valued coordinates, describe how to sort them with respect to their angle to the bottom-most point without using any floating-point computations. (Hint: use the line-side test primitive).

I ANGULAR SORTING (wronloor)

1. (Angular sorting without angles) Recall that the first step of the Graham scan algorithm for convex hull that we learned in lectures is to sort the points with respect to their angle from the bottom-most point. The most straightforward way to do this is of course to simply compute the angles and then sort the points. This has some drawbacks, such as having to perform floating-point computations that are susceptible to rounding errors.

Given a set of n points with integer-valued coordinates, describe how to sort them with respect to their angle to the bottom-most point without using any floating-point computations. (Hint: use the line-side test primitive).

I ANGULAR SORTING (wrongror)

1. (Angular sorting without angles) Recall that the first step of the Graham scan algorithm for convex hull that we learned in lectures is to sort the points with respect to their angle from the bottom-most point. The most straightforward way to do this is of course to simply compute the angles and then sort the points. This has some drawbacks, such as having to perform floating-point computations that are susceptible to rounding errors.

Given a set of n points with integer-valued coordinates, describe how to sort them with respect to their angle to the bottom-most point without using any floating-point computations. (Hint: use the line-side test primitive).

I ANGULAR SORTING (wronloor)

1. (Angular sorting without angles) Recall that the first step of the Graham scan algorithm for convex hull that we learned in lectures is to sort the points with respect to their angle from the bottom-most point. The most straightforward way to do this is of course to simply compute the angles and then sort the points. This has some drawbacks, such as having to perform floating-point computations that are susceptible to rounding errors.

Given a set of n points with integer-valued coordinates, describe how to sort them with respect to their angle to the bottom-most point without using any floating-point computations. (Hint: use the line-side test primitive).

I ANGULAR SORTING (wronloor)

1. (Angular sorting without angles) Recall that the first step of the Graham scan algorithm for convex hull that we learned in lectures is to sort the points with respect to their angle from the bottom-most point. The most straightforward way to do this is of course to simply compute the angles and then sort the points. This has some drawbacks, such as having to perform floating-point computations that are susceptible to rounding errors.

Given a set of n points with integer-valued coordinates, describe how to sort them with respect to their angle to the bottom-most point without using any floating-point computations. (Hint: use the line-side test primitive).

I ANGULAR SORTING (wronloor)

1. (Angular sorting without angles) Recall that the first step of the Graham scan algorithm for convex hull that we learned in lectures is to sort the points with respect to their angle from the bottom-most point. The most straightforward way to do this is of course to simply compute the angles and then sort the points. This has some drawbacks, such as having to perform floating-point computations that are susceptible to rounding errors.

Given a set of n points with integer-valued coordinates, describe how to sort them with respect to their angle to the bottom-most point without using any floating-point computations. (Hint: use the line-side test primitive).

I ANGULAR SORTING (wrongror)

1. (Angular sorting without angles) Recall that the first step of the Graham scan algorithm for convex hull that we learned in lectures is to sort the points with respect to their angle from the bottom-most point. The most straightforward way to do this is of course to simply compute the angles and then sort the points. This has some drawbacks, such as having to perform floating-point computations that are susceptible to rounding errors.

Given a set of n points with integer-valued coordinates, describe how to sort them with respect to their angle to the bottom-most point without using any floating-point computations. (Hint: use the line-side test primitive).

I ANGULAR SORTING (wronloor)

1. (Angular sorting without angles) Recall that the first step of the Graham scan algorithm for convex hull that we learned in lectures is to sort the points with respect to their angle from the bottom-most point. The most straightforward way to do this is of course to simply compute the angles and then sort the points. This has some drawbacks, such as having to perform floating-point computations that are susceptible to rounding errors.

Given a set of n points with integer-valued coordinates, describe how to sort them with respect to their angle to the bottom-most point without using any floating-point computations. (Hint: use the line-side test primitive).

2 POONT IN POLVOON

2. (Point-in-convex-polygon) Given a convex polygon P represented by points $P[1], P[2], \ldots, P[n]$ in counter-clockwise order, and a point q
(a) Determine whether q is in the polygon in time $O(n)$.

2 POHNT IN POLVGON
2. (Point-in-convex-polygon) Given a convex polygon P represented by points $P[1], P[2], \ldots, P[n]$ in counter-clockwise order, and a point q
(a) Determine whether q is in the polygon in time $O(n)$.

KEy STRATEGY:
use line side tests as yeur primative operation

CLAIM
a dirseted segment btw

- pair of points (pi. p_{j}) is en the convez holl < 20
all other points pas are to twe lett of the ray: $\overrightarrow{p_{i} p_{j}}$

2 POINT IN POLYGON
2. (Point-in-convex-polygon) Given a convex polygon P represented by points $P[1], P[2], \ldots, P[n]$ in counter-clockwise order, and a point q
(a) Determine whether q is in the polygon in time $O(n)$.

* we can iterate thru $\overline{P[i] P[i+1]}$ and ensure q is always lest

KEY STRATEGY:
use line side tests as your promotive operation

CLAIM
a directed segment btw

- pair of points (piopj) is en the convex hull < 20
all ether points pe are to the lett of the ray: $\overrightarrow{P_{i} P_{j}}$
(b) Speed up your algorithm to $O(\log n)$
(b) Speed up your algorithm to $O(\log n)$
*binary search will be involved somewhere
*line-side tests
* let's try to combine these to start...

(b) Speed up your algorithm to $O(\log n)$
* search for closest/ smallest region 2 is in

(b) Speed up your algorithm to $O(\underline{\log n)}$

- $\overrightarrow{P_{0} P}$
- $\overrightarrow{P_{0} P_{0}}$
- $\vec{P}_{0} P_{8}$
... knowing the result of this line-side test

(b) Speed up your algorithm to $O(\log n)$
* we dent have to check....
- $\vec{P}_{6} P_{0}$
- $\vec{P}_{0} P_{0}$
- $\vec{P}_{5} P_{8}$
... Knowing the result of this
line-side test
this is because any segment to the right will have the power to tell us the answer...

(b) Speed up your algorithm to $O(\log n)$
* we don't have to check....
- $\vec{P}_{0} P_{0}$
- $\vec{P}_{0} P_{0}$
- $\vec{P}_{P_{8}}$
... knowing the result of this line-side test
this is because any segment to the right will have the power to tell us the answer...

KEY IDEA:

use binary search to narrow down the polygon segments we need to check...
aka narrow the region that q is in.
(b) Speed up your algorithm to $O(\log n)$

* we have the triangle where q most live thre binary scapch.... enarrewed down polygen edgee to juet 1) il

(b) Speed up your algorithm to $O(\underline{\log n)}$
\#
we have the triangle where 8 most live they binary
search....
enarrowed down polygon edges to just 1) ic
is it in the polygon? yep... we just chests $\vec{P}_{8} P_{c}$

(b) Speed up your algorithm to $O(\log n)$
* we have the triangle where q most live thre binary scapch.... enarrewed down polygon edgee to jost 1) ic is it in the polygon? yep... we just eheck $\vec{P}_{0} P_{0}$ *so what's the final algorithom?

(b) Speed up your algorithm to $O(\log n)$
*

we have the triangle where q must live thru binary search.... (narrowed down polygon edges to just 1) ic is it in the polygon? yep... we just check $\vec{P}_{8} \vec{P}_{5}$
n so what's the final algorithm?

1. binary search tor the triangle alice that q is in
2. check whether inside or out an that alice
.2

MOTE: start point docsnot matter

