
15-451/651 Algorithm Design & Analysis

Fall 2022, Recitation #10

Objectives

• Understand commonly applied techniques for constructing and analyzing approximation
algorithms.

• Understand the objective of an online algorithm, how to create one, and how to bound its
competitive ratio.

Recitation Problems

1. (Scheduling Jobs but with 1 Machine) Given a single machine, we are to process
n jobs each with associated release times ri and process times pi. The ith job cannot be
started before it’s release time ri, and it takes pi to finish after it’s been released. Let
Ti denote the finish time of job i, so that Ti ≥ ri+pi. Our objective is to minimize

∑
i Ti.

Consider the following relaxation of this problem: a preemptive schedule is a schedule
that allows us to stop a job in the middle of processing and resume the job from where
we left off at some later time. We can compute the optimal preemptive schedule in
polynomial time1. Let the finish times of job i in the optimal preemptive schedule be
T ′
i .

(a) Prove that scheduling with preemptive schedules is indeed a relaxation of schedul-
ing with non-preemptive schedules. In other words, show that any valid non-
preemptive schedule is also a valid preemptive schedule. What is the relationship
between

∑
i T

′
i and OPT =

∑
i Ti?

(Hint: For the second part, your answer should be one of =,≤,≥.)

(b) Let job j be the jth job that the preemptive schedule finishes. Prove the following:

T ′
j ≥ maxjk=1 rk and T ′

j ≥
∑j

k=1 pk

1In fact, you can do it greedily. At any time, process the job with shortest remaining processing time.
This is called the SRPT rule. Try to show why this is optimal.

1

(c) Suppose that our non-preemptive schedule finishes jobs in the exact same order as
our preemptive schedule. Show that Tj ≤ 2T ′

j . Conclude that this non-preemptive
schedule is a 2-approx of OPT .

2

2. (SONET Ring Loading) The following problem is a classical problem in telecom-
munications networks. We have a cycle with n vertices, numbered 0 through n − 1
clockwise around the cycle. We are also given a set of requests. Each request is a pair
(i, j) where i is the source vertex and j the target vertex. The call can be routed either
clockwise or counterclockwise through the cycle. The objective is to route the calls so
as to minimize the load (total number of uses) of the most loaded edge of the cycle.

Write an linear program relaxation for the problem, and use it to give a 2-approximation
algorithm using a rounding argument. Remember that a linear program relaxation is
an LP such that if you could force some variables to be integers, you would solve the
problem exactly.

3

3. (Online Algorithms: Splay-Coin) 15-451 is creating a new cryptocurrency: the
splay-coin. To garner interest in the coin, we are allowing each coin to be exchanged
for 1 bonus point to your final grade.

Naturally, you would like to acquire 100 splay-coins by the last day of the n day
semester, since you did not turn in any homework. On day i you check the price pi
of splay-coins, and decide whether to purchase. Unfortunately, due to a bug in the
system, you can only purchase once, and want to minimize the cost when you do so.

Since cryptocurrency values are often highly volatile, 15-451 has also implemented
some price controls on our coin, including a lower bound L and upper bound U on the
price pi at any day i.

(a) Being the clever 15-451 student that you are, you’d like to use your algorithms
knowledge to help you minimize the price you pay. Come up with a

√
U/L-

competitive algorithm for this problem.

(b) Now just to make sure that none of your classmates can best you, prove that no
deterministic algorithm can achieve a competitive ratio better than

√
U/L.

4

5

Further Review

1. (Short answer / multiple choice)

(a) Consider the job scheduling problem with the following jobs to be scheduled on
3 machines: [4, 10, 3, 6, 9, 10, 20].

i. What is the makespan returned by the greedy algorithm?

ii. What is the makespan returned by the sorted greedy algorithm?

iii. What is the optimal makespan for these 3 machines?

(b) Consider the list update problem with the following sequence of Access(x) oper-
ations on an array of length 4 (1-indexed): [2, 1, 4, 3]

i. What is the cost of these accesses using the move-to-front algorithm?

ii. What is the optimal cost of these accesses?

2. (Weighted Scheduling Jobs on 1 Machine) Now consider the following weighted
variant of the first problem: each job has an associated weight wi and our objective is
to minimize

∑
i wiTi.

Unfortunately, it is now NP-Hard to compute the optimal weighted preemptive sched-
ule. Instead we’ll tackle this problem via the following LP (where N is the set of
jobs):

minimize
n∑

i=1

wiTi

s.t. Ti ≥ ri + pi ∀j ∈ N∑
i∈S

piTi ≥
1

2
(
∑
i∈S

pi)
2 ∀S ⊆ N

(Hint: The variables here are Ti’s and everything else is a constant.)

(a) Prove that this is a relaxation.

(b) Given the optimal solution T ∗, reorder the jobs s.t. T ∗
1 ≤ T ∗

2 ≤ Show that if
we set our schedule to finish jobs in this order, we have a 3-approx of OPT .

3. (Approximating Vertex Cover via the Dual) In class, we have seen an 2-approximation
of Vertex Cover by rounding the LP relaxation of Vertex Cover. Now, we’ll solve the
same problem but instead, we’ll take the dual of the LP relaxation and extract a vertex
cover from the solution of the dual. Recall the LP for Vertex Cover:

6

minimize
∑
v∈V

xv

s.t. xu + xv ≥ 1 ∀{u, v} ∈ E

xv ≥ 0 ∀v ∈ V

And its dual, the LP for maximum matching from Recitation 8:

maximize
∑
e∈E

ye

s.t.
∑
e:v∈e

ye ≤ 1 ∀v ∈ V

yv ≥ 0 ∀e ∈ E

(a) Now, given the optimal solution y∗, let our vertex cover S be the set of vertices in
which the constraints on those edges are tight (i.e. we achieve equality on those
constraints). Prove that S is a vertex cover.

(b) Show that |S| ≤ 2 ·OPT

4. (Planar Vertex Cover (Hard/optional)) In class we saw a 2-approximation for
the vertex cover problem by rounding its LP relaxation. We first solved the following
LP with variables xv for each v ∈ V , with the idea that, in an integer solution, xv = 1
if v is in the vertex cover, and xv = 0 otherwise.

minimize
∑
v∈V

wv

s.t. wu + wv ≥ 1 ∀{u, v} ∈ E

wv ≥ 0 ∀v ∈ V

When we solve the LP, we can get fractional values of xv, so we round them by taking
any vertices v for which xv ≥ 1/2. In this problem, we want to show that we can do
better on planar graphs. First, we will need an interesting lemma about the solutions
to this LP relaxation:

(a) (Optional – feel free to skip and just do the next part) Prove that for any
vertex solution to the LP relaxation of vertex cover above, for any vertex v, the
value of xv is always in {0, 1

2
, 1}. This property is often called “half-integrality”,

because the vertex solutions to the LP are always either integral, or have variables
equal to 1

2
, but nothing else.

Hints: Take a look at the optional material in the lecture notes for linear pro-
gramming, where a very similar proof is given for the bipartite matching problem,
which shows that its vertex solutions are always integral.

Now that we have this useful lemma, we are going to use another even more powerful
result, arguably the most famous theorem in all of graph theory, the four color theorem,
which says that all planar graphs are four colorable. Remember that a proper coloring

7

of a graph is an assignment of a color to each vertex such that adjacent vertices are
never the same color. A four coloring means that at most four different colors are
needed. You may also the fact that such a coloring can be found in polynomial time.

(b) Combine this fact with the lemma from (a), and the fact that our favourite LP
solving algorithms return a vertex solution, to produce a 1.5-approximation algo-
rithm for vertex cover on planar graphs.

Hints: The standard rounding algorithm rounds up every vertex where xv = 1/2,
but this can be a little redundant if two adjacent vertices both have xv = 1/2.
Find a way to skip rounding some of the vertices, such that you are still guaranteed
to have a valid vertex cover.

8

