
Lecture 25: The Fast Fourier Transform
a.k.a. how to multiply polynomials very fast

1

1 1
1 𝜔

1 …
𝜔2 …

1
𝜔𝑁−1

1 𝜔2

⋮ ⋮
𝜔4 …
⋮

𝜔2(𝑁−1)

⋮

1 𝜔𝑁−1 𝜔2(𝑁−1) …

⋱

𝜔 𝑁−1 2

Goals for today

• Review some math, i.e., polynomials and complex numbers

• Derive the Fast Fourier Transform algorithm, and use it to produce a
fast algorithm for polynomial multiplication

• See some applications of polynomial multiplication

2

Quick review: polynomials

• A polynomial of degree d is a function 𝑝 that looks like

𝑝 𝑥 ≔

𝑖=0

𝑑

𝑐𝑖 𝑥
𝑖 = 𝑐𝑑𝑥

𝑑 + 𝑐𝑑−1𝑥
𝑑−1 +⋯+ 𝑐1𝑥 + 𝑐0

• Uniquely described by its coefficients 𝑐𝑑 , 𝑐𝑑−1, … , 𝑐1, 𝑐0
• Uniquely described by its value at 𝑑 + 1 distinct points (the unique

reconstruction theorem)

3

Quick review: polynomials

Given polynomials 𝐴(𝑥) and 𝐵(𝑥),

𝐴 𝑥 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 +⋯+ 𝑎𝑑𝑥

𝑑

𝐵 𝑥 = 𝑏0 + 𝑏1𝑥 + 𝑏2𝑥
2 +⋯+ 𝑏𝑑𝑥

𝑑

Their product is
𝐶 𝑥 = 𝑐0 + 𝑐1𝑥 + 𝑐2𝑥

2 +⋯𝑐2𝑑𝑥
2𝑑

where

𝑐𝑘 =

𝑖+𝑗=𝑘

𝑎𝑖𝑏𝑗 =

𝑖=0

𝑘

𝑎𝑖𝑏𝑘−𝑖

4

Review: complex numbers

• The field of complex numbers consists of numbers of the form
𝑎 + 𝑏𝑖

• 𝑖2 = −1 by definition

• Useful because every polynomial equation has a solution over the
complex numbers. Not true over reals.

5

Roots of unity

• Can also write

𝑒
2𝜋𝑖𝑘
𝑛 = 𝒆

𝟐𝝅𝒊
𝒏

𝑘

6

• An 𝒏𝐭𝐡 root of unity is an 𝑛th root of 1, i.e.,
𝜔𝑛 = 1

• There are exactly 𝑛 complex 𝑛th roots of unity, given by

𝑒
2𝜋𝑖𝑘
𝑛 , 𝑘 = 0,1, … , 𝑛 − 1

Roots of unity

• The number 𝑒
2𝜋𝑖

𝑛 is called a primitive 𝒏𝐭𝐡 root of unity

𝑒
2𝜋𝑖𝑘
𝑛 = 𝑒

2𝜋𝑖
𝑛

𝑘

• Formally, 𝜔 is a primitive 𝑛th root of unity if

ቊ
𝜔𝑛 = 1
𝜔𝑘 ≠ 1 for 0 < 𝑘 < 𝑛

7

Roots of unity

8

𝟐𝐧𝐝 roots of unity 𝟒𝐭𝐡 roots of unity 𝟖𝐭𝐡 roots of unity

Theorem: The squares of the 𝑛th roots of unity are the (𝑛/2)th roots of unity

Back to polynomial multiplication

9

• Directly using the definition of the product of two polynomials would
give us an 𝑂(𝑑2) algorithm

• Karatsuba can bring this down to 𝑂(𝑑1.58)

• What if we used a different representation?

A: 𝑨 𝒙𝟎 , 𝑨 𝒙𝟏 , 𝑨 𝒙𝟐 , … , 𝑨 𝒙𝒅

B: 𝑩 𝒙𝟎 , 𝑩 𝒙𝟏 , 𝑩 𝒙𝟐 , … , 𝑩 𝒙𝒅

C: 𝑪 𝒙𝟎 , 𝑪 𝒙𝟏 , 𝑪 𝒙𝟐 , … , 𝑪 𝒙𝒅

, … , 𝑨 𝒙𝟐𝒅

, … , 𝑩 𝒙𝟐𝒅

, … , 𝑪 𝒙𝟐𝒅

Fast polynomial multiplication

1. Pick 𝑁 = 2𝑑 + 1 points 𝑥0, 𝑥1, … , 𝑥𝑁−1

2. Evaluate 𝐴 𝑥0 , 𝐴 𝑥1 , … , 𝐴(𝑥𝑁−1) and 𝐵 𝑥0 , 𝐵 𝑥1 , … , 𝐵(𝑥𝑁−1)

3. Compute 𝐶 𝑥𝑘 =

4. Interpolate 𝐶 𝑥0 , … , 𝐶(𝑥𝑁−1) to get the coefficients of 𝐶

10

How do we do steps 2 and 4 efficiently???

To Point-Value Form

• Consider the polynomial 𝐴 of degree 7

𝐴 𝑥 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 + 𝑎3𝑥

3 + 𝑎4𝑥
4 + 𝑎5𝑥

5 + 𝑎6𝑥
6 + 𝑎7𝑥

7

• Suppose we want to evaluate 𝐴(1) and 𝐴(−1)

𝐴 1 = 𝑎0 + 𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 + 𝑎5 + 𝑎6 + 𝑎7

𝐴 −1 = 𝑎0 − 𝑎1 + 𝑎2 − 𝑎3 + 𝑎4 − 𝑎5 + 𝑎6 − 𝑎7

11

How to make it recursive?

• Consider the polynomial 𝐴 of degree 7

𝐴 𝑥 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 + 𝑎3𝑥

3 + 𝑎4𝑥
4 + 𝑎5𝑥

5 + 𝑎6𝑥
6 + 𝑎7𝑥

7

• What if we split in half (like last slide) but keep it as a polynomial?

12

𝐴even 𝑥 = 𝑎0 + 𝑎2𝑥 + 𝑎4𝑥
2 + 𝑎6𝑥

3

𝐴odd 𝑥 = 𝑎1 + 𝑎3𝑥 + 𝑎5𝑥
2 + 𝑎7𝑥

3
𝑍 = 𝑎0 + 𝑎2 + 𝑎4 + 𝑎6
𝑊 = 𝑎1 + 𝑎3 + 𝑎5 + 𝑎7

A divide-and-conquer idea

𝐴 𝑥 = 𝐴even 𝑥2 + 𝑥 𝐴odd(𝑥
2)

13

• This formula gives us the key ingredient for divide-and-conquer
• We want to evaluate an 𝑁-term polynomial at 𝑁 points

• Break into two 𝑁/2-term polynomials and evaluate at 𝑁/2 points

• Combine the two halves using the formula above

• But what to do about the 𝑥2

• We want to evaluate 𝑁 points and recurse on a problem that evaluates
𝑁/2 points… such that the squares of the 𝑁 points are the 𝑁/2 points…

Reminder: The squares of the 𝑛th roots of unity are the (𝑛/2)th roots of unity

The Fast Fourier Transform

• Assume 𝑁 is a power of two (pad with zero coefficients)

• Choose 𝒙𝟎, 𝒙𝟏, … , 𝒙𝑵 to be 𝑵𝐭𝐡 roots of unity!!!

• In other words, set 𝜔 = exp
2𝜋𝑖

𝑁
then set 𝑥𝑘 = 𝜔𝑘

• To evaluate 𝐴(𝑥) at 𝜔0, 𝜔1, 𝜔2, … , 𝜔𝑁

14

• Break into 𝐴even(𝑥) and 𝐴odd(𝑥)

• Evaluate those at 𝜔0, 𝜔2, 𝜔4, …

• Combine using 𝐴 𝜔𝑘 = 𝐴even 𝜔2𝑘 + 𝜔𝑘 𝐴odd(𝜔
2𝑘)

The 𝑵/𝟐 𝒕𝒉 roots of unity!!!

FFT(𝑎0, 𝑎1, … , 𝑎𝑁−1 , 𝜔, 𝑁) = { // Returns F = [𝑨(𝝎𝟎), 𝑨(𝝎𝟏), … , 𝑨(𝝎𝑵−𝟏)]

if 𝑁 = 1 then return

𝐹even ← FFT(

𝐹odd ← FFT(

𝑥 ← 1 // 𝒙 stores 𝝎𝒌

for 𝑘 = 0 to 𝑁 − 1 do { // Compute 𝑨 𝝎𝒌 = 𝑨𝐞𝐯𝐞𝐧 𝝎𝟐𝒌 +𝝎𝒌 𝑨𝐨𝐝𝐝(𝝎
𝟐𝒌)

𝐹 𝑘 ←

𝑥 ← 𝑥 × 𝜔

} return 𝐹

}
15

Back to multiplication

16

1. Pick 𝑵 = 𝟐𝒅 + 𝟏 points 𝒙𝟎, 𝒙𝟏, … , 𝒙𝑵−𝟏 (Pick 𝑵𝐭𝐡 roots of unity)

2. Evaluate 𝑨 𝒙𝟎 , … , 𝑨(𝒙𝑵−𝟏) and 𝑩 𝒙𝟎 , … , 𝑩(𝒙𝑵−𝟏) (Using FFT)

3. Compute 𝑪 𝒙𝒌 = 𝑨 𝒙𝒌 𝑩(𝒙𝒌)

4. Interpolate 𝐶 𝑥0 , … , 𝐶(𝑥𝑁−1) to get the coefficients of 𝐶

One step to go…

Inverse FFT

• Given 𝐶 𝜔0 , 𝐶 𝜔1 , … , 𝐶(𝜔𝑁−1) where 𝑁 = 2𝑑 + 1

• We want to get the 𝑁 coefficients of 𝐶(𝑥) back

• We’re going to do it with maths

17

Observation: Evaluating a polynomial at a point can be represented
as a vector-vector product:

Inverse FFT continued

Corollary: Evaluating a polynomial at many points can be represented
as a matrix-vector product

1 𝑥0
1 𝑥1

𝑥0
2 …

𝑥1
2 …

𝑥0
𝑁−1

𝑥1
𝑁−1

1 𝑥2
⋮ ⋮

𝑥2
2 …

⋮

𝑥2
𝑁−1

⋮

1 𝑥𝑁−1 𝑥𝑁−1
2 …

⋱
𝑥𝑁−1
𝑁−1

𝑎0
𝑎1

⋮

𝑎𝑁−1

=

𝐴(𝑥0)
𝐴(𝑥1)

⋮

𝐴(𝑥𝑁−1)

18

Theorem (Vandermonde): This matrix is invertible

Inverse FFT continued

• In our case, 𝑥𝑘 = 𝜔𝑘 where 𝜔 is a principle 𝑁th root of unity, so

𝐹𝐹𝑇 𝜔,𝑁 =

1 1
1 𝜔

1 …
𝜔2 …

1
𝜔𝑁−1

1 𝜔2

⋮ ⋮
𝜔4 …
⋮

𝜔2(𝑁−1)

⋮

1 𝜔𝑁−1 𝜔2(𝑁−1) …

⋱

𝜔 𝑁−1 2

• Element in row 𝑘, column 𝑗, is 𝜔𝑘 𝑗
= 𝜔𝑘𝑗

19

We want to figure
out 𝑭𝑭𝑻−𝟏(𝝎,𝑵)

Inverse FFT continued

Idea: Consider FFT with inverse root of unity, i.e.

𝐹𝐹𝑇(𝜔−1, 𝑁)

What is the product of 𝐹𝐹𝑇 𝜔,𝑁 × 𝐹𝐹𝑇(𝜔−1, 𝑁)? The (𝑘, 𝑗) entry is

20

Inverse FFT continued

• Entry (𝑘, 𝑗) of 𝐹𝐹𝑇 𝜔,𝑁 × 𝐹𝐹𝑇(𝜔−1, 𝑁) is:

𝑠=0

𝑁−1

𝜔−𝑘𝑠𝜔𝑠𝑗

• What does the diagonal of the product look like? (𝑘 = 𝑗)

21

Inverse FFT continued

• Entry (𝑘, 𝑗) of 𝐹𝐹𝑇 𝜔,𝑁 × 𝐹𝐹𝑇(𝜔−1, 𝑁) is:

𝑠=0

𝑁−1

𝜔−𝑘𝑠𝜔𝑠𝑗

• What do the non-diagonal entries of the product look like? (𝑘 ≠ 𝑗)

22

Reminder: 𝜔 is a primitive root of unity

ቊ𝜔
𝑁 = 1

𝜔𝑘 ≠ 1 for 0 < 𝑘 < 𝑁

Inverse FFT continued

• So, we’ve just showed that

𝐹𝐹𝑇 𝜔,𝑁 × 𝐹𝐹𝑇 𝜔−1, 𝑁 =
𝑁 0 0
0 ⋱ 0
0 0 𝑁

= 𝑁
1 0 0
0 ⋱ 0
0 0 1

• Therefore

𝐹𝐹𝑇−1 𝜔,𝑁 =

23

Back to multiplication

24

1. Pick 𝑵 = 𝟐𝒅 + 𝟏 points 𝒙𝟎, 𝒙𝟏, … , 𝒙𝑵−𝟏 (Pick 𝑵𝐭𝐡 roots of unity)

2. Evaluate 𝑨 𝒙𝟎 , … , 𝑨(𝒙𝑵−𝟏) and 𝑩 𝒙𝟎 , … , 𝑩(𝒙𝑵−𝟏) (Using FFT)

3. Compute 𝑪 𝒙𝒌 = 𝑨 𝒙𝒌 𝑩(𝒙𝒌)

4. Interpolate 𝑪 𝒙𝟎 , … , 𝑪(𝒙𝑵−𝟏) to get the coefficients of 𝑪 (Inverse FFT)

Runtime:

Question break

25

Applications

Problem (Counting 2-sums): Given two lists of 𝑛 non-negative integers a
and b such that all elements are at most N ≥ 𝑛, we want to count the
number of ways to make every possible sum of an element from a and b

Naïve algorithm: Just try all 𝑂(𝑛2) pairs and compute their sum

Question: Can we get an efficient algorithm with respect to 𝑁?

26

Counting 2-sums

• Let 𝐴[𝑖] denote the number of occurrences of the number 𝑖 in 𝑎

• Let 𝐵[𝑗] denote the number of occurrences of the number 𝑗 in 𝑏

• Let 𝐶[𝑘] = number of occurrences of 𝑘 which is a sum from 𝑎 and 𝑏

27

𝐶 𝑘 =

Counting 2-sums

Algorithm: Write the vectors 𝐴 and 𝐵 then compute their convolution
by treating them as the coefficients of a polynomial. The coefficients of
their product is the answer.

Runtime:

28

	Slide 1: Lecture 25: The Fast Fourier Transform
	Slide 2: Goals for today
	Slide 3: Quick review: polynomials
	Slide 4: Quick review: polynomials
	Slide 5: Review: complex numbers
	Slide 6: Roots of unity
	Slide 7: Roots of unity
	Slide 8: Roots of unity
	Slide 9: Back to polynomial multiplication
	Slide 10: Fast polynomial multiplication
	Slide 11: To Point-Value Form
	Slide 12: How to make it recursive?
	Slide 13: A divide-and-conquer idea
	Slide 14: The Fast Fourier Transform
	Slide 15
	Slide 16: Back to multiplication
	Slide 17: Inverse FFT
	Slide 18: Inverse FFT continued
	Slide 19: Inverse FFT continued
	Slide 20: Inverse FFT continued
	Slide 21: Inverse FFT continued
	Slide 22: Inverse FFT continued
	Slide 23: Inverse FFT continued
	Slide 24: Back to multiplication
	Slide 25: Question break
	Slide 26: Applications
	Slide 27: Counting 2-sums
	Slide 28: Counting 2-sums

