Lecture 25: The Fast Fourier Transform

a.k.a. how to multiply polynomials very fast

$$
\left[\begin{array}{cccccc}
1 & 1 & 1 & \ldots & & 1 \\
1 & \omega & \omega^{2} & \ldots & & \omega^{N-1} \\
1 & \omega^{2} & \omega^{4} & \ldots & & \omega^{2(N-1)} \\
\vdots & \vdots & \vdots & & & \vdots \\
& & & & \ddots & \\
1 & \omega^{N-1} & \omega^{2(N-1)} & \ldots & & \omega^{(N-1)^{2}}
\end{array}\right]
$$

Goals for today

- Review some math, i.e., polynomials and complex numbers
- Derive the Fast Fourier Transform algorithm, and use it to produce a fast algorithm for polynomial multiplication
- See some applications of polynomial multiplication

Quick review: polynomials

- A polynomial of degree d is a function p that looks like

$$
p(x):=\sum_{i=0}^{d} c_{i} x^{i}=c_{d} x^{d}+c_{d-1} x^{d-1}+\cdots+c_{1} x+c_{0}
$$

- Uniquely described by its coefficients $\left\langle c_{d}, c_{d-1}, \ldots, c_{1}, c_{0}\right\rangle$
- Uniquely described by its value at $d+1$ distinct points (the unique reconstruction theorem)

Quick review: polynomials

Given polynomials $A(x)$ and $B(x)$,

$$
\begin{aligned}
& A(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{d} x^{d} \\
& B(x)=b_{0}+b_{1} x+b_{2} x^{2}+\cdots+b_{d} x^{d}
\end{aligned}
$$

Their product is

$$
C(x)=c_{0}+c_{1} x+c_{2} x^{2}+\cdots c_{2 d} x^{2 d}
$$

where

$$
c_{k}=\sum_{i+j=k} a_{i} b_{j}=\sum_{i=0}^{k} a_{i} b_{k-i}
$$

Review: complex numbers

- The field of complex numbers consists of numbers of the form

$$
a+b i
$$

- $i^{2}=-1$ by definition
- Useful because every polynomial equation has a solution over the complex numbers. Not true over reals.

Roots of unity

- An $n^{\text {th }}$ root of unity is an $n^{\text {th }}$ root of 1, i.e.,

$$
\omega^{n}=1
$$

- There are exactly n complex $n^{\text {th }}$ roots of unity, given by

$$
e^{\frac{2 \pi i k}{n}}, \quad k=0,1, \ldots, n-1
$$

- Can also write

$$
e^{\frac{2 \pi i k}{n}}=\left(e^{\frac{2 \pi i}{n}}\right)^{k}
$$

Roots of unity

- The number $e^{\frac{2 \pi i}{n}}$ is called a primitive $n^{\text {th }}$ root of unity

$$
e^{\frac{2 \pi i k}{n}}=\left(e^{\frac{2 \pi i}{n}}\right)^{k}
$$

- Formally, ω is a primitive $n^{\text {th }}$ root of unity if

$$
\left\{\begin{array}{l}
\omega^{n}=1 \\
\omega^{k} \neq 1 \text { for } 0<k<n
\end{array}\right.
$$

Roots of unity

$2^{\text {nd }}$ roots of unity

$4^{\text {th }}$ roots of unity

$8^{\text {th }}$ roots of unity

Theorem: The squares of the $n^{\text {th }}$ roots of unity are the $(n / 2)^{\text {th }}$ roots of unity

Back to polynomial multiplication

- Directly using the definition of the product of two polynomials would give us an $O\left(d^{2}\right)$ algorithm
- Karatsuba can bring this down to $O\left(d^{1.58}\right)$
- What if we used a different representation?

A: $A\left(\underset{\times}{x_{0}}\right), A\left(\underset{\times}{x_{1}}\right), A\left(\underset{\times}{x_{2}}\right), \ldots, A(\underbrace{\left(x_{d}\right.}_{x}), \ldots, A\left(x_{2 d}^{x_{2 d}}\right)$
$\mathrm{B}: B\left(x_{0}\right), B\left(x_{1}\right), B\left(x_{2}\right), \ldots, B\left(x_{d}\right), \ldots, B\left(x_{2 d}\right)$
$\mathrm{C}: C\left(x_{0}\right), C\left(x_{1}\right), C\left(x_{2}\right), \ldots, C\left(x_{d}\right), \ldots, C\left(x_{2 d}\right)$

Fast polynomial multiplication

1. Pick $N=2 d+1$ points $x_{0}, x_{1}, \ldots, x_{N-1}$
2. Evaluate $A\left(x_{0}\right), A\left(x_{1}\right), \ldots, A\left(x_{N-1}\right)$ and $B\left(x_{0}\right), B\left(x_{1}\right), \ldots, B\left(x_{N-1}\right)$
3. Compute $C\left(x_{k}\right)=A\left(x_{k}\right) \times B\left(x_{k}\right) \longleftarrow O(n)$
4. Interpolate $C\left(x_{0}\right), \ldots, C\left(x_{N-1}\right)$ to get the coefficients of C How do we do steps 2 and 4 efficiently???

To Point-Value Form

- Consider the polynomial A of degree 7

$$
A(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7}
$$

- Suppose we want to evaluate $A(1)$ and $A(-1)$

$$
\begin{array}{rl}
& A(1)=a_{0}+a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7} \\
A(-1)=a_{0}-a_{1}+a_{2}-a_{3}+a_{4}-a_{5}+a_{6}-a_{7} \\
Z=a_{0}+a_{2}+a_{4}+a_{6} & A(1)=z+W \\
W=a_{1}+a_{3}+a_{5}+a_{7} & A(-1)=Z-W
\end{array}
$$

How to make it recursive?

- Consider the polynomial A of degree 7

$$
A(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7}
$$

-What if we split in half (like last slide) but keep it as a polynomial?

$$
\begin{aligned}
& =\operatorname{Aeven}(1) \\
& Z=a_{0}+a_{2}+a_{4}+a_{6} \quad A_{\text {even }}(x)=a_{0}+a_{2} x+a_{4} x^{2}+a_{6} x^{3} \\
& W=a_{1}+a_{3}+a_{5}+a_{7} \quad A_{\text {odd }}(x)=a_{1}+a_{3} x+a_{5} x^{2}+a_{7} x^{3} \\
& =A_{\text {odd }} \text { (1) } \\
& A(x)=\operatorname{Aeven}\left(x^{2}\right)+x \operatorname{Aodd}\left(x^{2}\right)
\end{aligned}
$$

A divide-and-conquer idea

$$
A(x)=A_{\text {even }}\left(x^{2}\right)+x A_{\text {odd }}\left(x^{2}\right)
$$

- This formula gives us the key ingredient for divide-and-conquer
- We want to evaluate an N-term polynomial at N points
- Break into two $N / 2$-term polynomials and evaluate at $N / 2$ points
- Combine the two halves using the formula above
- But what to do about the x^{2}
- We want to evaluate N points and recurse on a problem that evaluates $N / 2$ points... such that the squares of the N points are the $N / 2$ points...

Reminder: The squares of the $n^{\text {th }}$ roots of unity are the $(n / 2)^{\text {th }}$ roots of unity

The Fast Fourier Transform

- Assume N is a power of two (pad with zero coefficients)
- Choose $x_{0}, x_{1}, \ldots, x_{N-1}$ to be $N^{\text {th }}$ roots of unity!!!
- In other words, set $\omega=\exp \left(\frac{2 \pi i}{N}\right)$ then set $x_{k}=\omega^{k}$
- To evaluate $A(x)$ at $\omega^{0}, \omega^{1}, \omega^{2}, \ldots, \omega^{N-1}$
- Break into $A_{\text {even }}(x)$ and $A_{\text {odd }}(x)$
- Evaluate those at $\omega^{0}, \omega^{2}, \omega^{4}, \ldots \longleftarrow$ The $(N / 2)^{\text {th }}$ roots of unity!!!
- Combine using $A\left(\omega^{k}\right)=A_{\text {even }}\left(\omega^{2 k}\right)+\omega^{k} A_{\text {odd }}\left(\omega^{2 k}\right)$
$\operatorname{FFT}\left(\left[a_{0}, a_{1}, \ldots, a_{N-1}\right], \omega, N\right)=\left\{/ / \operatorname{Returns} F=\left[A\left(\omega^{0}\right), A\left(\omega^{1}\right), \ldots, A\left(\omega^{N-1}\right)\right]\right.$ if $N=1$ then return $\left[\boldsymbol{a}_{0}\right]$

$$
\begin{aligned}
& F_{\text {even }} \leftarrow \operatorname{FFT}\left(\left[a_{0}, a_{2}, \ldots, a_{N-2}\right], \omega^{2}, N / 2\right) \\
& F_{\text {odd }} \leftarrow \operatorname{FFT}\left(\left[a_{1}, a_{3}, \ldots, a_{N-1}\right], \omega^{2}, N / 2\right) \\
& x \leftarrow 1 / / x \text { stores } \omega^{k} \\
& \text { for } k=0 \text { to } N-1 \text { do }\left\{/ / \text { Compute } A\left(\omega^{k}\right)=A_{\text {even }}\left(\omega^{2 k}\right)+\omega^{k} A_{\text {odd }}\left(\omega^{2 k}\right)\right. \\
& \quad F[k] \leftarrow F_{\text {even }}\left[k \bmod \frac{N}{2}\right]+\supset F_{\text {odd }}\left[k \bmod \frac{N}{2}\right] \\
& x \leftarrow x \times \omega \\
& \} \text { return } F \\
& \}
\end{aligned}
$$

Back to multiplication

1. Pick $N=2 d+1$ points $x_{0}, x_{1}, \ldots, x_{N-1}$ (Pick $N^{\text {th }}$ roots of unity)
2. Evaluate $\boldsymbol{A}\left(x_{0}\right), \ldots, \boldsymbol{A}\left(x_{N-1}\right)$ and $B\left(x_{0}\right), \ldots, B\left(x_{N-1}\right)$ (Using FFT)
3. Compute $C\left(x_{k}\right)=\boldsymbol{A}\left(\boldsymbol{x}_{k}\right) \boldsymbol{B}\left(\boldsymbol{x}_{k}\right)$
4. Interpolate $C\left(x_{0}\right), \ldots, C\left(x_{N-1}\right)$ to get the coefficients of C

One step to go...

Inverse FFT

- Given $C\left(\omega^{0}\right), C\left(\omega^{1}\right), \ldots, C\left(\omega^{N-1}\right)$ where $N=2 d+1$
- We want to get the N coefficients of $C(x)$ back
- We're going to do it with maths

Observation: Evaluating a polynomial at a point can be represented as a vector-vector product:

$$
\left(\begin{array}{lllll}
x^{0} & x^{1} & x^{2} & \ldots & x^{N-1}
\end{array}\right)\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{N-1}
\end{array}\right)
$$

Inverse FFT continued

Corollary: Evaluating a polynomial at many points can be represented as a matrix-vector product

$$
\left[\begin{array}{cccccc}
1 & x_{0} & x_{0}^{2} & \ldots & & x_{0}^{N-1} \\
1 & x_{1} & x_{1}^{2} & \ldots & & x_{1}^{N-1} \\
1 & x_{2} & x_{2}^{2} & \cdots & & x_{2}^{N-1} \\
\vdots & \vdots & \vdots & & & \vdots \\
& & & & \ddots & \\
1 & x_{N-1} & x_{N-1}^{2} & \cdots & & x_{N-1}^{N-1}
\end{array}\right]\left[\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
\\
a_{N-1}
\end{array}\right]=\left[\begin{array}{c}
A\left(x_{0}\right) \\
A\left(x_{1}\right) \\
\vdots \\
A\left(x_{N-1}\right)
\end{array}\right]
$$

Theorem (Vandermonde): This matrix is invertible

Inverse FFT continued

- In our case, $x_{k}=\omega^{k}$ where ω is a principle $N^{\text {th }}$ root of unity, so

$$
\operatorname{FFT}(\omega, N)=\left[\begin{array}{cccccc}
1 & 1 & 1 & \cdots & & 1 \\
1 & \omega & \omega^{2} & \cdots & & \omega^{N-1} \\
1 & \omega^{2} & \omega^{4} & \cdots & & \omega^{2(N-1)} \\
\vdots & \vdots & \vdots & & & \vdots \\
& & & & \ddots & \\
1 & \omega^{N-1} & \omega^{2(N-1)} & \ldots & & \omega^{(N-1)^{2}}
\end{array}\right]
$$ out $F F T^{-1}(\omega, N)$

- Element in row k, column j, is $\left(\omega^{k}\right)^{j}=\omega^{k j}$

Inverse FFT continued

Idea: Consider FFT with inverse root of unity, i.e.

$$
\operatorname{FFT}\left(\omega^{-1}, N\right)
$$

What is the product of $F F T(\omega, N) \times F F T\left(\omega^{-1}, N\right)$? The (k, j) entry is

$$
\sum_{s=0}^{N-1} w^{-k s} w^{s j}
$$

Inverse FFT continued

- Entry (k, j) of $F F T(\omega, N) \times F F T\left(\omega^{-1}, N\right)$ is:

$$
\sum_{s=0}^{N-1} \omega^{-k s} \omega^{s j}
$$

$$
\left[\begin{array}{llll}
N_{N} & & & \\
& \ddots & \\
& & & \\
& & & N
\end{array}\right]
$$

- What does the diagonal of the product look like? $(k=j)$

$$
\sum_{s=0}^{N-1} w^{-j s} w^{s j}=\sum 1=N
$$

Inverse FFT continued

- Entry (k, j) of $F F T(\omega, N) \times F F T\left(\omega^{-1}, N\right)$ is:

$$
\left[\begin{array}{cc}
N_{N} & 0 \\
{ }_{N} & \ddots \\
0 & \\
N
\end{array}\right]
$$

$$
1+r+r^{2}+\ldots+r^{N-1}=\frac{1-r^{N}}{1-r} \quad \sum_{s=0}^{N-1} \omega^{-k s} \omega^{s j} \quad \begin{aligned}
& \text { Reminder: } \omega \text { is a primitive root of uni } \\
& \omega^{N}=1 \\
& \omega^{k} \neq 1 \text { for } 0<k<N
\end{aligned}
$$

-What do the non-diagonal entries of the product look like? $(k \neq j)$

$$
\begin{gathered}
\sum_{s=0}^{N-1} w^{-k s} w^{s j}=\sum^{(j-k) s}=\sum_{s=0}^{N-1}\left(w^{(j-k)}\right)^{s} \\
=\frac{1-\left(w^{j-k}\right)^{N}}{1-w^{j-k}}=\frac{1-1}{\sim}=0
\end{gathered}
$$

Inverse FFT continued

- So, we've just showed that

$$
F F T(\omega, N) \times F F T\left(\omega^{-1}, N\right)=\left[\begin{array}{ccc}
N & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & N
\end{array}\right]=N\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & 1
\end{array}\right]
$$

- Therefore

$$
\operatorname{FFT}^{-1}(\omega, N)=\frac{1}{N} F F T\left(\omega^{-1}, N\right)
$$

Back to multiplication

1. Pick $N=2 d+1$ points $x_{0}, x_{1}, \ldots, x_{N-1}$ (Pick $N^{\text {th }}$ roots of unity)
2. Evaluate $\boldsymbol{A}\left(x_{0}\right), \ldots, \boldsymbol{A}\left(x_{N-1}\right)$ and $B\left(x_{0}\right), \ldots, B\left(x_{N-1}\right)$ (Using FFT)
3. Compute $C\left(x_{k}\right)=A\left(x_{k}\right) B\left(x_{k}\right)$
4. Interpolate $C\left(x_{0}\right), \ldots, C\left(x_{N-1}\right)$ to get the coefficients of C (Inverse FFT)

Runtime: $T(N)=2 T(N / 2)+O(N)=O(N \log N)$

Question break

Applications

Problem (Counting 2-sums): Given two lists of n non-negative integers a and b such that all elements are at most $\mathrm{N} \geq n$, we want to count the number of ways to make every possible sum of an element from a and b

Naïve algorithm: Just try all $O\left(n^{2}\right)$ pairs and compute their sum

Question: Can we get an efficient algorithm with respect to N ?

Counting 2-sums

- Let $A[i]$ denote the number of occurrences of the number i in a
- Let $B[j]$ denote the number of occurrences of the number j in b
- Let $C[k]=$ number of occurrences of k which is a sum from a and b

$$
C[k]=\sum_{\substack{i, j \\
i+j=k}} A[i] \cdot B[j] \quad \begin{aligned}
& \text { Discrete } \\
& \text { convolution } \\
& \text { of } A \& B
\end{aligned}
$$

Counting 2-sums

Algorithm: Write the vectors A and B then compute their convolution by treating them as the coefficients of a polynomial. The coefficients of their product is the answer.

Runtime: $O(N \log N)$

