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Polynomials
* Polynomial: p(x) = cgx% + cqg_1x9 T+ -+ c1x + ¢
* (Cq,Cq—1, ---» Co) completely describes p
e Addition: (x* +2x— 1)+ B3x>+7x) =3x3+x?+9x— 1

e Multiplication:
(x?+2x—1) - (3x3 + 7x) = 3x° + 4x3 + 6x* + 14x? — 7x

* Evaluation: p(5) = ¢459 + c4_1597 1 + - + ¢;5 + ¢



Evaluating a Polynomial Quickly
* Polynomial: p(x) = cgxd + cqg_1x9 T+ -+ c1x + ¢
 Evaluate at a point b in time O(d) using Horner’s Rule:

* Compute: cq
Cq—1 +Cq° b
Cd—2 + Cg-1 ° b + Cq - b?

* Each step has O(1) operations — multiply by and add coefficient



Polynomial Degree
* Polynomial: p(x) = cgx% + cqg_1x9 T+ -+ c1x + ¢
*If cq # 0, the degreeis d

* If A(x) has degree d and B(x) has degree d, then A(x) + B(x) has
degree at most d

Why is the degree at most d?



Roots of Polynomials

* A root of a polynomial is a number r for which A(r) =0

* Fundamental theorem of algebra: a non-zero degree-d polynomial has at most d roots

* Implies any distinct degree d polynomials A(x) and B(x) can evaluate to the same value
on at most d different values x. Why?

* A(x) — B(x) has degree at most d, so can have at most d roots

* A degree d polynomial is determined by its evaluations on d+1 distinct points X, ..., Xg4

* Given (Xg,¥o), ---, (Xq, Yq) for distinct X, ..., Xq, is there a polynomial p of degree at most d
with p(x;) = y; for each i?



Unique Reconstruction Theorem

* Given (Xg, Vo), ---, (Xg, Vq) for distinct x,, ..., X4, there exists a
polynomial of degree at most d for which p(x;) = y; for each i

 Define Rj(x) = Hjii(x — Xj) / Hjii(xi — xj), which has degree d
¢ RI(X]) =0 forj * 1
* Ri(x;) =1

*p(x) = Xj=0,..a¥i Ri®)



Example of Polynomial Reconstruction

* Given pairs (5,1), (6,2), and (7,9), we would like to find a degree-2
polynomial that passes through these points

. _ (x-6)(x-7) _ 1 _ _
Ry() = =28 = 2 (x— 6)(x— 7)

. _(x—5)(x—7)__ _ _
R0 = B = ~(x=5)(x = 7)

. _ (x-5)(x-6) _ 1 _ _
R(0) = Spoa = 3 (x = 5)(x— 6)

ep(x) =1-Ry(x) +2-Ry(x) +9-R,(x) = 3x* — 32x + 86



Polynomials For Error Correcting Codes



A Deletion Channel

5,19, 2,3,2 *,19, %, %, 2

e Alice has d+1 numbers and wants to send them to Bob
 Up to k of the numbers might be replaced with a *

e How can Bob learn Alice’s numbers?



A Deletion Channel

* Alice could repeat each number k+1 times

* If k =3, she sends:
55,5,5,19,19,19,19,2,2,2,2,3,3,3,3,2,2,2,2

* This is (d+1)(k+1) words of communication

e Can we get d+k+1 communication?



A Deletion Channel

* Suppose Alice has cq,cq—1,Cq-2.... Co

e She interprets these as the coefficients of a polynomial P(x):

P(x) = Z cix!

i=0,....d

 Alice sends P(0), P(1), P(2), ..., P(d+k)

* Bob gets at least d+1 of these numbers. By the unique reconstruction
theorem, he recovers P(x), and hence cq4, cq—1,Cq-2,... Co



General Error Correction

Now the adversary can replace up to k numbers with other numbers

If Alice wants to send Bob a single number x, how many times does she need to copy it?
e 2k+1, to ensure the majority symbol is correct

Now Alice has cq, cq4_1,C4—2,.., Co, Which she writes as a polynomial P(x) = Y.i_o 4 cix!

Suppose Alice sends P(0), P(1), ..., P(r). How large does r need to be?
e d+2k+1 points is enough, so r = d+2k

* If it weren’t, there’d be another degree at most d polynomial Q agreeing on d+k+1
of these evaluations, so P and Q would agree on at least d+1 points. A contradiction



Algorithm for General Error Correction

e But how to find P(x) given k corruptions to P(0), P(1), ..., P(d+2k)?
* Suppose Bob receives ry, Iy, ..., 'g+2k

e Z={isuchthatr; # P(i)},andso |Z| <k

¢ B() = [Tiez(x — 1)

*P(x)E(x) =r - E(x)forallx=0,1, 2, .., d+2k



Berlekamp-Welch Algorithm

* P(x)-E(x) =1, E(xX)forallx=0,1,2, .., d+2k (*)
e E(x) = xK + e _1xX71 + ep_,xK72 + -« + ¢, if degree(E(x)) = k
* P(X) : E(X) — fd+kXd+k + fd+k—1 Xd-}_k_1 + -+ fO

* Pluggingeachx=0,1, 2, ..., d+2k into (*), we get a linear equation relating
fa+k fa+x-1, - fo, €x—1,€K—2, -, €0

e d+2k+1 unknowns and d+2k+1 equations

(P(x)-E(x))
E(x)

 Equations are linearly independent, so get (P(x) - E(x)) and E(x), output



Polynomials for Finding Maximum Matchings



Multivariate Polynomials

_ 2 2 2.2
* p(Xq,Xp,X3,Xq) = X1X5Xy + X3X5 + X{X5X5Xy

N PR PN P VA
* Degree of monomial x'x,’x3°X," isi; +1i; +1i3 + 14

* Degree of p is the maximum degree of any of its monomials



Schwartz-Zippel Lemma for Multivariate Polynomials

e [Schwartz- lepeIJ Let P(X, ... 2 be a non-zero, m-variable, degree at most d
polynomial, and let S be a subset from the field F. If each X; is chosen independently in

)

Pr[P(Xq, ...,X;,) = 0] < —

 Sanity check: if m = 1, a non-zero degree-d polynomial has at most d roots
* If |F| >3d, how can we tell if P is the all zeros polynomial w.pr. 2/3?

* Choose X4, ..., Xy independently from F, and evaluate P(X4, ..., X\)



Tutte Matrix

* If G is a graph on vertices vy, ..., vV, the Tutte matrixisa |V| x | V|
matrix M(G) with
Ti j if {”U,',’Uj} el andi <
M (G)i,j = —Tj i if {v,-,vj} eF andi>j
0 Tf ('U,',’Uj) e I



Tutte Determinant Theorem

 [Tutte] A graph has a perfect matching if and only if the determinant of M(G)
is not the zero polynomial (a matching is perfect if all nodes are matched)

det(M(G)) = x%, det(M(G)) = 0

* det(M(G)) is a polynomial of degree at most n, and could have n! terms
* How can we determine if G has a perfect matching with probability at least 2/3?
* Choose a field F with |F| >3n, randomly fill in the x;; values, and compute determinant!



Finding a Perfect Matching

* We can quickly determine if G has a perfect matching
* Can reduce the error probability to 1/n3, say, by choosing |F| = n*
e But how to output the edges in the perfect matching?

* For each edge e,
* Remove e and see if there is still a perfect matching
* If there is no perfect matching, put e back in G, otherwise discard e

* At the end, will be left with exactly n/2 edges in a perfect matching



Finding a Maximum Matching

e Can we find a maximum matching if we can find a perfect matching?
* Given a graph G, connect n-2k new nodes to every node in G

* If G has a matching of size at least k, then this new graph has a
perfect matching

* If the maximum matching size of G is less than k, then this new graph
does not have a perfect matching

* Binary search on k



