Matrix and Integer
Multiplication

David Woodruff
CMU

(Thanks to Carl Kingsford for some of these slides)

Matrix Multiplication

— C
C1—r2 2

X
|

I’.I XC2

o (r1 X 02) XCq = multiplications

If 1 = c; = rn = c = N, this standard approach takes ©(N?3):

» For every row 7 (N of them)
» For every column ¢ (N of them)

» Take their inner product: r - ¢ using N multiplications

Matrix Multiplication Properties

« Suppose A is in R"™ K and B is in RK¥™

* In general AB #BA
e If Cis in R™Xt then (AB) C = A(BC)

e If Cis in RKXM then A(B+C) = AB + AC

Can we multiply faster than ©(N?>)?

For simplicity, assume N = 2" for some n. The multiplication is:

(
A11 A12 B11 B12 C11 C12
N =23 X =
X A21 A22 B21 B22 CZ1 C22
— —
N2 ol
> C11 = A11B11 + A12B1 > Cio = A11B12 + A12B2
> (o1 = Ax1B11 + A By > (oo = A1 Bio + A B

Uses 8 multiplications

T(N) =8T(N/2) + c N*2 Master Formula => T(N) = Theta(N”*3)

Strassen’s Algorithm

11

A

21

A22

B

B21

C11

C12

C21

C22

P1 = (A11 + Ax)(B11 + B22)
P> = (A21 + A22)Bi1
P3 = A11(B12 — B)
P4 = A2 (B21 — Bi1)
Ps = (A11 + A12) B
Ps = (A21 — A11)(Bi1 + Bi2)
P7 = (A12 — A2)(B21 + B22)

Cu=Pi+Ps—Ps+F;
Ci2 = P3+ Ps
Co1 =P+ Py
Co=P1— P2+ P3+ FPe

Uses only 7 multiplications!

Since the submatrix multiplications are the expensive operations,
we save a lot by eliminating one of them.

Apply the above idea recursively to perform the 7 matrix
multiplications contained in Pq,..., P5.

Need to show how much savings this results in overall.

Recurrence

T(N)=T@")=7T(2"/2) + 4"

recursive X additions

Solving the recurrence:

T(2") 7T(2" 1) N c4™ T(2" 1) N c4"
7n o 7n 7n o 7n—1 7n

The red term is same as the left-hand side but with n — 1, so we
can recursively expand:

T(2" " 4 SNV
§n)=v+§§—f=w§(7) < for some constants a,

So:

T(2n) < 7o = a2nlog2(7) _ OéN2'807"' _ O(N2.807...)

Space Complexity of Strassen’s Algorithm

* Use the same memory for each recursive call
 Start with memory for the two input matrices and output matrix

* Let W(n) be the memory of Strassen’s algorithm to multiply n x n matrices

n . .
e Allocate W (E) memory for recursive computation of P;
* When done, add the output to C;4 and C5,
* Then reuse your W (2) memory to compute each of P,, ..., P,

« W(n)=3n2 + W (g)

Bounding the Space Complexity

W(n) = 3n? + W(g)

W(n) < 4n?

Fast Matrix Multiplication: Practice

Implementation issues.
= Sparsity.
Caching effects.
Numerical stability.
Odd matrix dimensions.
Crossover to classical algorithm around n = 128.

Common misperception. “Strassen is only a theoretical curiosity.”
= Apple reports 8x speedup on 64 Velocity Engine when n = 2,500.
= Range of instances where it's useful is a subject of controversy.

Remark. Can "Strassenize" Ax = b, determinant, eigenvalues, SVD,

20

Fast Matrix Multiplication: Theory

Q. Multiply two 2-by-2 matrices with 7 scalar multiplications?
A. Yesl! [Strassen 1969] O(n°®7) = 0(n 287)

Q. Multiply two 2-by-2 matrices with 6 scalar multiplications?

A. Impossible. [Hopcroft and Kerr 1971] 01 25 = O(n>™)
n =) =0n"

Q. Two 3-by-3 matrices with 21 scalar multiplications?
A. Also impossible. @(nlog321) — On 2.77)

Begun, the decimal wars have. [Pan, Bini et al, Schonhage, ...]

= Two 20-by-20 matrices with 4,460 scalar multiplications. O(n 28%%)
= Two 48-by-48 matrices with 47,217 scalar multiplications. O(n 2701
= A year later. 0 2™
n December', 1979. On 2.521813)

= Januar'y, 1980. On 2.521801)

21

Fast Matrix Multiplication: Theory

‘w
w(T)
30 | {23]
2.8_r ,,,,,, . -g_,_,________w_q_). _________ —
25¢----4----- R o
2-0 1 :; ¥ | T 1 I . TA 1 1 |
1968 1969 1975 1976 1977 1978 1979 1980 198| 1982

FIG. 1. w(t) is the best exponent announced by time 1.

Best known. O(n237) [Coppersmith-Winograd, 1987]

Conjecture. O(n***) for any ¢ > 0.

Caveat. Theoretical improvements to Strassen are progressively
less practical.

22

Summary
» Strassen first to show matrix multiplication can be done faster than
O(N3) time.

» Strassen's algorithm gives a performance improvement for large-ish
N, depending on the architecture, e.g. N > 100 or N > 1000.

» Strassen’s algorithm isn’t optimal though! Over the years it's been
improved:

Authors Year Runtime

Strassen 1969 O(N2897)

Coppersmith & Winograd 1990 O(N?237°%)
Stothers 2010 O(N?#373¢)
Williams 2011 O(N2-3727)

» Conjecture: an O(N?) algorithm exists.

Karatsuba's Algorithm for Integer Multiplication

Complex Multiplication

Complex multiplication. (a + bi) (¢ + di) = x + yi.

Grade-school. x=ac-bd, y=bc + ad.

4 multiplications, 2 additions

Q. Is it possible to do with fewer multiplications?
A. Yes. [Gauss] x=ac-bd, y=(a+b)(c+d) -ac-bd.

3 multiplications, 5 additions

Remark. Improvement if no hardware multiply.

Integer Multiplication

10101110
X 01011101

10101110)
10101110
10101110 -
10101110
10101110 y

111111001101160

n numbers of n bits each
O(r?)-time

Start similar to Strassen’s algorithm, breaking the items into
blocks (m = n/2):

» x = x12" 4+ Xxg

>y = 2"+ yo
Then:

xy = (x12™ + x0) (y12™ + yo) = x1y12°™ + (x1y0 + xoy1)2™ + Xo¥0

Breaking x and y into blocks

n = 2 pits

A

— - AN — _ —
n/2 = m bits n/2 = m bits

x12™ can be computed via “shift right by m”

So this multiplication only costs O(n) operations.

T(n) =4T(n/2) + O(n) Master Formula => T(n) = Theta(n”*2)

4 Multiplications — 3 Multiplications

xy = x1y12°™ 4+ (x1y0 + x0y1)2™ + X0 Y0

We can write two multiplications as one, plus some subtractions:

X1Yo + Xoy1 = (x1 - Xo)()/1 +)/0) — X1Y1 — Xo0)o

But what we need to subtract is exactly what we need for the
original multiplication!

> Po = Xo0)0o
> p1 = X1

> po = (x1+x0)(y1 + Yo) — P1 — Po

xy = p12°™ + p22™ + po

11

Analysis

Assume n = 2K for some k (this is the common case when the
integers are stored in computer words):

T(25) =3T(2571) + 2%

T(2K) T2k Y N c2k

< B for some constants v, /3

(v handles the constant work for the base case.) So:

T(2F) < B3k = g(2k)le(3) = gploe(3) — (158

12

Implementation Details

Karatsuba is usually faster than naive multiplication for 320-640 bit numbers

P2 = (X1 +X0)(y1 + ¥o) —P1 — Po

(%1 + Xg) and (y; + yp) could be a number of size 2™*1, which might need an extra bit
But note p, = (Xo —X1)(¥y1 —¥o) + P1 + Po

We might need a bit to encode the sign of (x; — x;) and of (y; — y,)

You can instead record the sign, and multiply the absolute values of these numbers

One advantage is the final computation of p, now involves no subtractions

Toom-Cook Multiplication

e Karatsuba’s algorithm reduces 4 multiplications to 3
* Runs in ©(nU083)/U082)) = @(n!-58) time

* The Toom-3 algorithm splits numbers into 3 parts and reduces 9
multiplications to 5

e Runsin @(n(085)/(083)) = @(n1*%) time

* The Toom-k algorithm splits numbers into k parts
log(2k—1)
* Runsin ©(c(k) n loe®)

- Optimizing gives @(n2Y (1981 [og n) time

What’s Really Going On?

*x= X 2M+x5 and y=y; 2" +y,

*P(z) =x1z+%xy and Q(z) =y;z+ Yy,

°X- %/ = P(2™) - Q(2™), so integer multiplication can be solved with polynomial
multiplication!

* Karatsuba’s algorithm is a special case of a fast algorithm for polynomial
multiplication. We will discuss polynomials more the next few lectures.

* Using the Fast Fourier Transform to multiply polynomials:
» Schonage-Strassen algorithm for integer multiplication: O(n log n log log n) time
* Harvey-van der Hoeven algorithm for integer multiplication: O(n log n) time

Polynomials
* Polynomial: p(x) = cgx% + cqg_1x9 T+ -+ c1x + ¢
* (Cq,Cq—1, ---» Co) completely describes p
* Addition can be done in O(d) time
e Multiplication can be done in O(d log d) time using the FFT

 Evaluation can be done in O(d) time

Evaluating a Polynomial Quickly
* Polynomial: p(x) = cgxd + cqg_1x9 T+ -+ c1x + ¢
 Evaluate at a point b in time O(d) using Horner’s Rule:

* Compute: cq
Cq—1 +Cq° b
Cd—2 + Cg-1 ° b + Cq - b?

* Each step has O(1) operations — multiply by and add coefficient

Polynomial Degree
* Polynomial: p(x) = cgx% + cqg_1x9 T+ -+ c1x + ¢
*If cq # 0, the degreeis d

* If A(x) has degree d and B(x) has degree d, then A(x) + B(x) has
degree at most d

Why is the degree at most d?

