Matrix and Integer Multiplication

David Woodruff
CMU

(Thanks to Carl Kingsford for some of these slides)

Matrix Multiplication

If $r_{1}=c_{1}=r_{2}=c_{2}=N$, this standard approach takes $\Theta\left(N^{3}\right)$:

- For every row \vec{r} (N of them)
- For every column \vec{c} (N of them)
- Take their inner product: $r \cdot c$ using N multiplications

Matrix Multiplication Properties

- Suppose A is in $R^{n x k}$ and B is in $R^{k x m}$
- In general $A B \neq B A$
- If C is in $R^{m x t}$, then $(A B) C=A(B C)$
- If C is in $R^{k x m}$, then $A(B+C)=A B+A C$

Can we multiply faster than $\Theta\left(N^{3}\right)$?

For simplicity, assume $N=2^{n}$ for some n. The multiplication is:

- $C_{11}=A_{11} B_{11}+A_{12} B_{21}$
- $C_{12}=A_{11} B_{12}+A_{12} B_{22}$
- $C_{21}=A_{21} B_{11}+A_{22} B_{21}$
- $C_{22}=A_{21} B_{12}+A_{22} B_{22}$

Uses 8 multiplications

$\mathrm{T}(\mathrm{N})=8 \mathrm{~T}(\mathrm{~N} / 2)+\mathrm{c} \mathrm{N}^{\wedge} 2 \quad$ Master Formula $=>\mathrm{T}(\mathrm{N})=\operatorname{Theta}\left(\mathrm{N}^{\wedge} 3\right)$

Strassen's Algorithm

A_{11}	A_{12}			
A_{21}	A_{22}	\times	B_{11}	B_{12}
:---	:---			
B_{21}	B_{22}	$=$	C_{11}	C_{12}
:---	:---			
C_{21}	C_{22}			

$$
\begin{array}{ll}
P_{1}=\left(A_{11}+A_{22}\right)\left(B_{11}+B_{22}\right) & C_{11}=P_{1}+P_{4}-P_{5}+P_{7} \\
P_{2}=\left(A_{21}+A_{22}\right) B_{11} & C_{12}=P_{3}+P_{5} \\
P_{3}=A_{11}\left(B_{12}-B_{22}\right) & C_{21}=P_{2}+P_{4} \\
P_{4}=A_{22}\left(B_{21}-B_{11}\right) & C_{22}=P_{1}-P_{2}+P_{3}+P_{6} \\
P_{5}=\left(A_{11}+A_{12}\right) B_{22} & \\
P_{6}=\left(A_{21}-A_{11}\right)\left(B_{11}+B_{12}\right) & \\
P_{7}=\left(A_{12}-A_{22}\right)\left(B_{21}+B_{22}\right) & \text { Uses only } 7 \text { multiplications! }
\end{array}
$$

Since the submatrix multiplications are the expensive operations, we save a lot by eliminating one of them.

Apply the above idea recursively to perform the 7 matrix multiplications contained in P_{1}, \ldots, P_{7}.

Need to show how much savings this results in overall.

Recurrence

$$
T(N)=T\left(2^{n}\right)=\underbrace{7 T\left(2^{n} / 2\right)}_{\text {recursive } \times}+\underbrace{c 4^{n}}_{\text {additions }}
$$

Solving the recurrence:

$$
\frac{T\left(2^{n}\right)}{7^{n}}=\frac{7 T\left(2^{n-1}\right)}{7^{n}}+\frac{c 4^{n}}{7^{n}}=\frac{T\left(2^{n-1}\right)}{7^{n-1}}+\frac{c 4^{n}}{7^{n}}
$$

The red term is same as the left-hand side but with $n-1$, so we can recursively expand:

$$
\frac{T\left(2^{n}\right)}{7^{n}}=\gamma+\sum_{i=1}^{n} \frac{c 4^{i}}{7^{i}}=\gamma+c \sum_{i=1}^{n}\left(\frac{4}{7}\right)^{i} \leq \alpha \quad \text { for some constants } \alpha, \gamma
$$

So:

$$
T\left(2^{n}\right) \leq 7^{n} \alpha=\alpha 2^{n \log _{2}(7)}=\alpha N^{2.807 \ldots}=O\left(N^{2.807 \ldots}\right)
$$

Space Complexity of Strassen's Algorithm

- Use the same memory for each recursive call
- Start with memory for the two input matrices and output matrix
- Let $\mathrm{W}(\mathrm{n})$ be the memory of Strassen's algorithm to multiply $\mathrm{n} \times \mathrm{n}$ matrices
- Allocate $W\left(\frac{n}{2}\right)$ memory for recursive computation of P_{1}
- When done, add the output to C_{11} and C_{22}
- Then reuse your $W\left(\frac{n}{2}\right)$ memory to compute each of $\mathrm{P}_{2}, \ldots, \mathrm{P}_{7}$
- $W(n)=3 n^{2}+W\left(\frac{n}{2}\right)$

Bounding the Space Complexity

$$
\begin{aligned}
& W(n)=3 n^{2}+W\left(\frac{n}{2}\right) \\
& W(n) \leq 4 n^{2}
\end{aligned}
$$

Fast Matrix Multiplication: Practice

Implementation issues.

- Sparsity.
- Caching effects.
- Numerical stability.
- Odd matrix dimensions.
- Crossover to classical algorithm around $n=128$.

Common misperception. "Strassen is only a theoretical curiosity."

- Apple reports $8 \times$ speedup on $G 4$ Velocity Engine when $n \approx 2,500$.
- Range of instances where it's useful is a subject of controversy.

Remark. Can "Strassenize" $A x=b$, determinant, eigenvalues, SVD,

Fast Matrix Multiplication: Theory

Q. Multiply two 2-by-2 matrices with 7 scalar multiplications?
A. Yes! [Strassen 1969]

$$
\Theta\left(n^{\log _{2} 7}\right)=O\left(n^{2.807}\right)
$$

Q. Multiply two 2-by-2 matrices with 6 scalar multiplications?
A. Impossible. [Hopcroft and Kerr 1971]

$$
\Theta\left(n^{\log _{2} 6}\right)=O\left(n^{2.59}\right)
$$

Q. Two 3-by-3 matrices with 21 scalar multiplications?
A. Also impossible.

$$
\Theta\left(n^{\log _{3} 21}\right)=O\left(n^{2.77}\right)
$$

Begun, the decimal wars have. [Pan, Bini et al, Schönhage, ...]

- Two 20-by-20 matrices with 4,460 scalar multiplications. $O\left(n^{2805}\right)$
- Two 48-by-48 matrices with 47,217 scalar multiplications. $O\left(n^{2.7801}\right)$
- A year later.
- December, 1979.
- January, 1980.
$O\left(n^{2.7799}\right)$
$O\left(n^{2.51813}\right)$
$O\left(n^{2.521801}\right)$

Fast Matrix Multiplication: Theory

Fig. 1. $\omega(t)$ is the best exponent announced by time τ.

Best known. $O\left(n^{2.376}\right)$ [Coppersmith-Winograd, 1987]

Conjecture. $O\left(n^{2+\varepsilon}\right)$ for any $\varepsilon>0$.

Caveat. Theoretical improvements to Strassen are progressively less practical.

Summary

- Strassen first to show matrix multiplication can be done faster than $O\left(N^{3}\right)$ time.
- Strassen's algorithm gives a performance improvement for large-ish N, depending on the architecture, e.g. $N>100$ or $N>1000$.
- Strassen's algorithm isn't optimal though! Over the years it's been improved:

Authors	Year	Runtime
Strassen	1969	$O\left(N^{2.807}\right)$
$\quad \vdots$		
Coppersmith \& Winograd	1990	$O\left(N^{2.3754}\right)$
Stothers	2010	$O\left(N^{2.3736}\right)$
Williams	2011	$O\left(N^{2.3727}\right)$

- Conjecture: an $O\left(N^{2}\right)$ algorithm exists.

Karatsuba's Algorithm for Integer Multiplication

Complex Multiplication

Complex multiplication. $(a+b i)(c+d i)=x+y i$.

Grade-school. $x=a c-b d, y=b c+a d$.

4 multiplications, 2 additions
Q. Is it possible to do with fewer multiplications?
A. Yes. [Gauss] $x=a c-b d, y=(a+b)(c+d)-a c-b d$.

3 multiplications, 5 additions

Remark. Improvement if no hardware multiply.

Integer Multiplication

Start similar to Strassen's algorithm, breaking the items into blocks ($m=n / 2$):

- $x=x_{1} 2^{m}+x_{0}$
- $y=y_{1} 2^{m}+y_{0}$

Then:

$$
x y=\left(x_{1} 2^{m}+x_{0}\right)\left(y_{1} 2^{m}+y_{0}\right)=x_{1} y_{1} 2^{2 m}+\left(x_{1} y_{0}+x_{0} y_{1}\right) 2^{m}+x_{0} y_{0}
$$

Breaking x and y into blocks

$x_{1} 2^{m}$ can be computed via "shift right by m "
So this multiplication only costs $O(n)$ operations.

$$
T(n)=4 T(n / 2)+O(n) \quad \text { Master Formula }=>T(n)=\text { Theta }\left(n^{\wedge} 2\right)
$$

4 Multiplications $\rightarrow 3$ Multiplications

$$
x y=x_{1} y_{1} 2^{2 m}+\left(x_{1} y_{0}+x_{0} y_{1}\right) 2^{m}+x_{0} y_{0}
$$

We can write two multiplications as one, plus some subtractions:

$$
x_{1} y_{0}+x_{0} y_{1}=\left(x_{1}+x_{0}\right)\left(y_{1}+y_{0}\right)-x_{1} y_{1}-x_{0} y_{0}
$$

But what we need to subtract is exactly what we need for the original multiplication!

- $p_{0}=x_{0} y_{0}$
- $p_{1}=x_{1} y_{1}$
$-p_{2}=\left(x_{1}+x_{0}\right)\left(y_{1}+y_{0}\right)-p_{1}-p_{0}$

$$
x y=p_{1} 2^{2 m}+p_{2} 2^{m}+p_{0}
$$

Analysis

Assume $n=2^{k}$ for some k (this is the common case when the integers are stored in computer words):

$$
\begin{aligned}
T\left(2^{k}\right) & =3 T\left(2^{k-1}\right)+c 2^{k} \\
\frac{T\left(2^{k}\right)}{3^{k}} & =\frac{T\left(2^{k-1}\right)}{3^{k-1}}+\frac{c 2^{k}}{3^{k}} \\
& =\gamma+c \sum_{i=1}^{k} \frac{2^{i}}{3^{i}}
\end{aligned}
$$

$$
\leq \beta \quad \text { for some constants } \gamma, \beta
$$

(γ handles the constant work for the base case.) So:

$$
T\left(2^{k}\right) \leq \beta 3^{k}=\beta\left(2^{k}\right)^{\log _{2}(3)}=\beta n^{\log _{2}(3)}=O\left(n^{1.58 \ldots}\right)
$$

Implementation Details

- Karatsuba is usually faster than naïve multiplication for 320-640 bit numbers
- $\mathrm{p}_{2}=\left(\mathrm{x}_{1}+\mathrm{x}_{0}\right)\left(\mathrm{y}_{1}+\mathrm{y}_{0}\right)-\mathrm{p}_{1}-\mathrm{p}_{0}$
- $\left(x_{1}+x_{0}\right)$ and $\left(y_{1}+y_{0}\right)$ could be a number of size 2^{m+1}, which might need an extra bit
- But note $\mathrm{p}_{2}=\left(\mathrm{x}_{0}-\mathrm{x}_{1}\right)\left(\mathrm{y}_{1}-\mathrm{y}_{0}\right)+\mathrm{p}_{1}+\mathrm{p}_{0}$
- We might need a bit to encode the sign of $\left(x_{0}-x_{1}\right)$ and of $\left(y_{1}-y_{0}\right)$
- You can instead record the sign, and multiply the absolute values of these numbers
- One advantage is the final computation of p_{2} now involves no subtractions

Toom-Cook Multiplication

- Karatsuba's algorithm reduces 4 multiplications to 3
- Runs in $\Theta\left(\mathrm{n}^{(\log 3) /(\log 2)}\right)=\Theta\left(\mathrm{n}^{1.58}\right)$ time
- The Toom-3 algorithm splits numbers into 3 parts and reduces 9 multiplications to 5
- Runs in $\Theta\left(\mathrm{n}^{(\log 5) /(\log 3)}\right)=\Theta\left(\mathrm{n}^{1.46}\right)$ time
- The Toom-k algorithm splits numbers into k parts
- Runs in $\Theta\left(c(k) n^{\frac{\log (2 k-1)}{\log (k)}}\right)$
- Optimizing gives $\Theta\left(n 2^{\sqrt{ }(2 \log n)} \log n\right)$ time

What's Really Going On?

$\cdot x=x_{1} \cdot 2^{m}+x_{0}$ and $y=y_{1} \cdot 2^{m}+y_{0}$

- $\mathrm{P}(\mathrm{z})=\mathrm{x}_{1} \mathrm{z}+\mathrm{x}_{0}$ and $\mathrm{Q}(\mathrm{z})=\mathrm{y}_{1} \mathrm{z}+\mathrm{y}_{0}$
- $x \cdot y=P\left(2^{m}\right) \cdot Q\left(2^{m}\right)$, so integer multiplication can be solved with polynomial multiplication!
- Karatsuba's algorithm is a special case of a fast algorithm for polynomial multiplication. We will discuss polynomials more the next few lectures.
- Using the Fast Fourier Transform to multiply polynomials:
- Schonage-Strassen algorithm for integer multiplication: O(n log $n \log \log n)$ time
- Harvey-van der Hoeven algorithm for integer multiplication: $O(n \log n)$ time

Polynomials

- Polynomial: $\mathrm{p}(\mathrm{x})=\mathrm{c}_{\mathrm{d}} \mathrm{x}^{\mathrm{d}}+\mathrm{c}_{\mathrm{d}-1} \mathrm{x}^{\mathrm{d}-1}+\cdots+\mathrm{c}_{1} \mathrm{x}+\mathrm{c}_{0}$
- $\left(\mathrm{c}_{\mathrm{d}}, \mathrm{c}_{\mathrm{d}-1}, \ldots, \mathrm{c}_{0}\right)$ completely describes p
- Addition can be done in O(d) time
- Multiplication can be done in O(d log d) time using the FFT
- Evaluation can be done in O(d) time

Evaluating a Polynomial Quickly

- Polynomial: $\mathrm{p}(\mathrm{x})=\mathrm{c}_{\mathrm{d}} \mathrm{x}^{\mathrm{d}}+\mathrm{c}_{\mathrm{d}-1} \mathrm{x}^{\mathrm{d}-1}+\cdots+\mathrm{c}_{1} \mathrm{x}+\mathrm{c}_{0}$
- Evaluate at a point b in time O(d) using Horner's Rule:
- Compute: c_{d}

$$
\begin{aligned}
& c_{d-1}+c_{d} \cdot b \\
& c_{d-2}+c_{d-1} \cdot b+c_{d} \cdot b^{2}
\end{aligned}
$$

- Each step has O(1) operations - multiply by and add coefficient

Polynomial Degree

- Polynomial: $\mathrm{p}(\mathrm{x})=\mathrm{c}_{\mathrm{d}} \mathrm{x}^{\mathrm{d}}+\mathrm{c}_{\mathrm{d}-1} \mathrm{x}^{\mathrm{d}-1}+\cdots+\mathrm{c}_{1} \mathrm{x}+\mathrm{c}_{0}$
- If $c_{d} \neq 0$, the degree is d
- If $A(x)$ has degree d and $B(x)$ has degree d, then $A(x)+B(x)$ has degree at most d

Why is the degree at most d?

