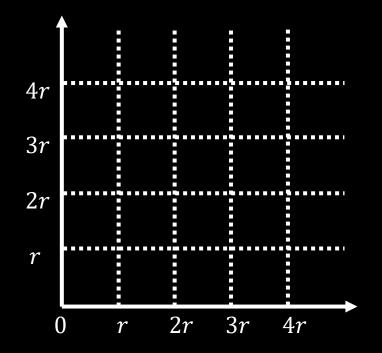
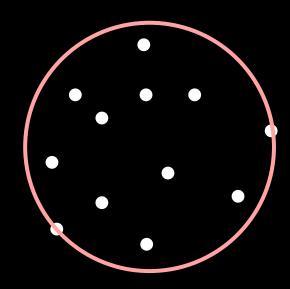
Lecture 22: Computational Geometry II

Randomized incremental algorithms





Goals for today

- Apply randomized incremental algorithms to geometry
- Give randomized incremental algorithms for two key problems:
 - The closest pair problem
 - The smallest enclosing circle problem
- Use **backward analysis** to analyze the runtime of these algorithms

Model and assumptions

- Points are real-valued pairs (x, y)
- Arithmetic on reals is O(1) again
- We can take the floor function of a real in O(1) time
- Hashing is O(1) time in expectation (see universal hashing)

Closest Pair

The closest pair problem

Problem (closest pair): Given n points P, define CP(P) to be the closest distance, i.e.

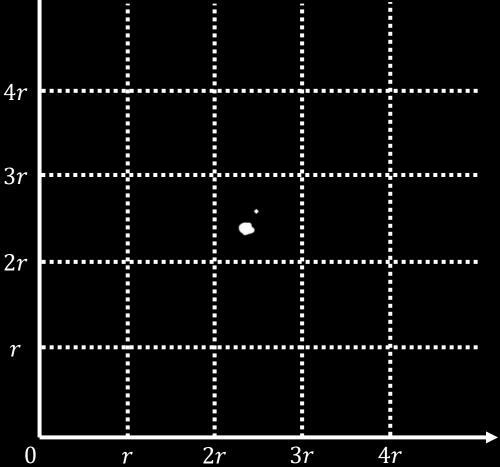
$$CP(P) = \min_{p,q \in P} ||p-q||$$

Goal is to compute CP(P)

Brute force is
$$O(n^2)$$

A grid data structure

Let's define a grid with size r $(x,y) \rightarrow (\lfloor \stackrel{\times}{\neq} \rfloor, \lfloor \stackrel{\vee}{\neq} \rfloor)$ 4r 3r 3r



How does this help?

- If the grid size is sufficiently large, closest pair will be in same cell, or in neighboring cells
- If the grid size is too large, there will be too many points per cell...

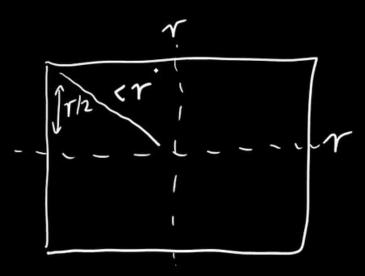
Goal: Choose the right grid size.

- Want few points per cell, so that looking in a cell is fast
- Want the closest pair to be in neighboring cells so we find them fast

The right grid size

Claim (the right grid size): Given a grid with points P and grid size r = CP(P), no cell contains more than four points

Proof:



An incremental approach

Key idea (incremental): Add the points one at a time

- Check neighboring cells to see if there's a new closest pair
- If so, rebuild the grid with the new size
- Otherwise keep going

A grid data structure

Invariant (grid size): Given a grid containing a set of points P, we want the grid size r to always equal CP(P)

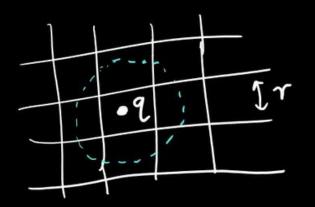
- MakeGrid(p,q): Make a grid containing p and q, with r = ||p q||
- Lookup(G, p): Given a grid G and point p (not currently in the grid), we want to know whether p is part of a new closest pair
- Insert(G, p): Given a grid G and point p, inserts p and returns the grid size (which may have changed because of p)

Issue: The number of grid cells could be unbounded...

Use a hashtable keys = (i,j) (int coords).

Implement MakeGrid(p, q): $\gamma = ||p - q||$ Make empty grid of size γ put p and q in Cells

Implement Lookup(G, q):



Implement Insert(G, q): Lookup (G, q) Either distance doesn't change Insert q Into grid O(1) time Else Make fresh grid of r = new distance O(i) time if i pts in grid

Runtime

Claim (runtime): The worst-case runtime of the incremental grid algorithm is $O(n^2)$

Proof: Worst case, regrid every time

$$\frac{\hat{r}}{\hat{z}}O(i) = O(n^2)$$

Randomized runtime

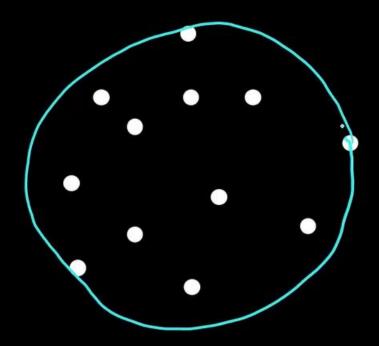
Claim (randomized incremental is fast): If we randomly shuffle the points, then run the incremental grid algorithm, it takes O(n) time in expectation

Proof: "Backward analysis"
pr (answer changes at iteration
$$i$$
) = $\frac{2}{i}$
Runtime of iteration $i = \frac{i-2}{i}O(i) + \frac{2}{i}O(i) = O(i)$
Runtime = $O(n)$ in expectation

Smallest enclosing circle

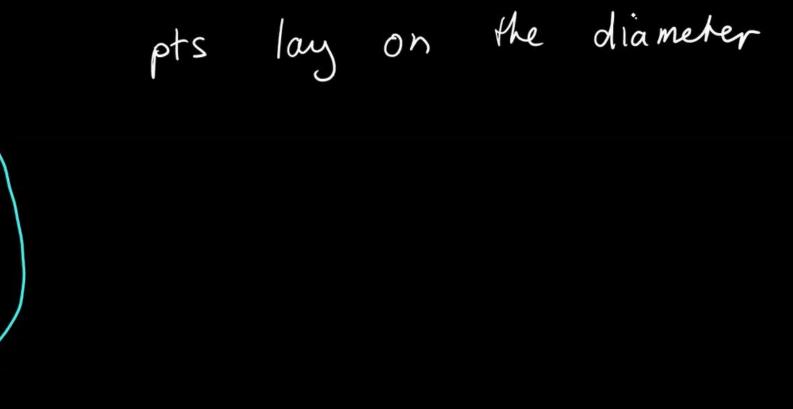
The smallest enclosing circle

Problem (Smallest enclosing circle): Given $n \ge 2$ points in two dimensions, find the smallest circle that contains all of them



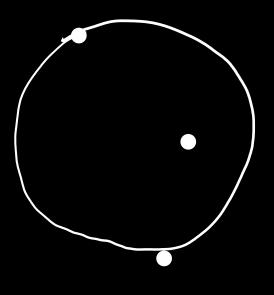
Base cases

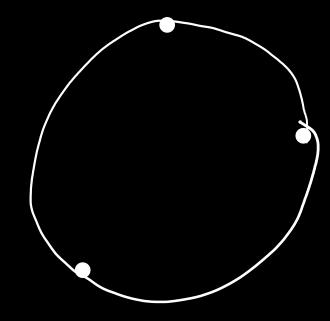
Base case (two points):



Base cases

Base case (three points):





Case 1: Obtuse angle

Case 2: Acute angle

Three points and a circle

K

B

Fact (unique circle): Given three non-colinear points, there is a unique circle that goes through them

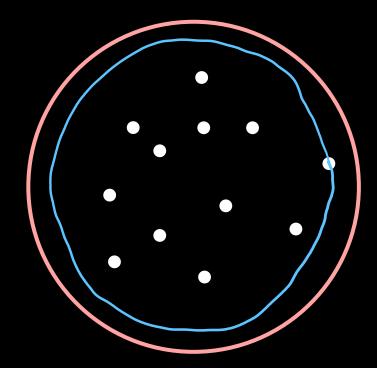
The general case

Given n > 3 points, how many circles do we need to consider?

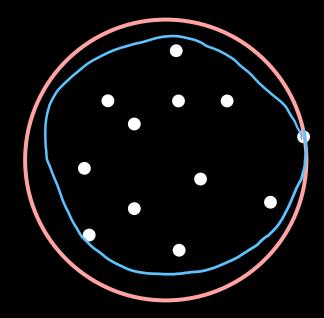
Theorem (three points is always enough): For any set of points, the smallest enclosing circle either touches two points p_i, p_j at a diameter, or touches three points p_i, p_j, p_j

In other words: For any set of points, there exists i, j, k, such that $SEC(p_1, ..., p_n) = SEC(p_i, p_j, p_k)$

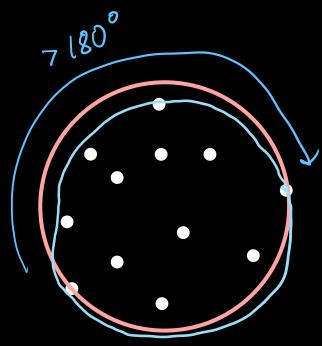
Case 1 (no points):



Case 2 (one point):



Case 3 (two point):



Case 4 (three or more points): Optimal by circle through 3 points

Brute force algorithms

Algorithm 1 (brute force): Try all triples of points and find their smallest enclosing circle. Check whether this circle contains every point. Returns the smallest such circle.

$$O(n^{4})$$
 time

Algorithm 2 (better brute force): Try all triples of points and find their smallest enclosing circle. Return the largest such circle.

 $O(n^3)$ time

Beating brute force: incremental

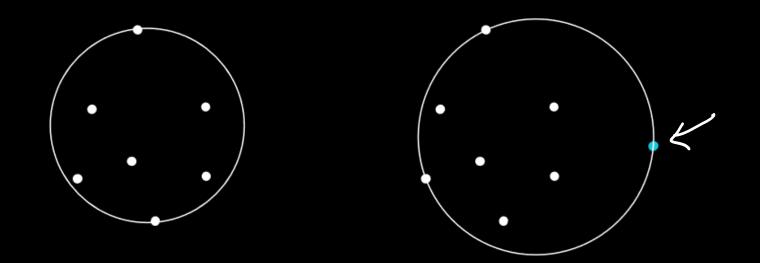
Incremental approach: Insert points one by one and maintain the smallest enclosing circle

When inserting p_i :

- Case 1: p_i is inside the current circle. Great, do nothing!
- Case 2: p_i is outside the current circle. Need to find the new one

Making incremental fast

Observation: When we add p_i , if it is not in the current circle, then it is on the boundary of the new circle



Incremental algorithm

SEC($[p_1, p_2, ..., p_n]$) = { Let C be the smallest circle enclosing p_1 and p_2 **for** *i* = 3 to *n* do { if p_i is not inside C then $C = SEC 1 ([\rho_1, \rho_i], \rho_i]$ locked ρi return C

Incremental algorithm continued C locked in SEC1($[p_1, p_2, ..., p_k], q$) = { Let C be the smallest circle enclosing p_1 and q**for** *i* = 2 to *k* do { if p_i is not inside C then $C = SEC \mathcal{Q}([p_i, \dots, p_{i-1}]), p_i, q$ both locked in return C

Incremental algorithm deeper again e locked in SEC2($[p_1, p_2, ..., p_k], q_1, q_2$) = { Let C be the smallest circle enclosing q_1 and q_2 **for** *i* = 1 to *k* do { if p_i is not inside C then $C = circle through (p_i, q_i, q_2)$ return C

Runtime

Runtime (SEC2): SEC2 runs in O(k) time

Runtime (SEC1): In the worst case, SEC1 runs in $O(k^2)$ time (all SEC2 k times

Runtime (SEC): In the worst case, SEC runs in $O(n^3)$ time $\sum_{i=1}^{n} i^2 = O(n^3)$

Randomization to the rescue!!!

Claim (randomized SEC is fast): If we randomly shuffle the points in SEC and SEC1, then SEC1 runs in O(k) expected time and SEC runs in O(n) expected time

Pr[Iteration i changes answer] =
$$\frac{3}{i}$$

Runtime per iterations $\frac{3}{i} \cdot O(i) + \frac{i-3}{i} \cdot O(i) = O(i)$
=> SEC1 takes $O(k)$ time
=> SEC takes $O(n)$ the in expectation.

Summary

- Randomized incremental algorithms are pretty great. We can turn slow brute force algorithms into expected linear-time algorithms!
- We got O(n) time for closest pair and smallest enclosing circle
- Backward analysis helps us analyze the runtime of these randomized incremental algorithms