
Lecture 22: Computational Geometry II
Randomized incremental algorithms
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Goals for today

• Apply randomized incremental algorithms to geometry

• Give randomized incremental algorithms for two key problems:

• The closest pair problem

• The smallest enclosing circle problem

• Use backward analysis to analyze the runtime of these algorithms
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Model and assumptions

• Points are real-valued pairs (𝑥, 𝑦)

• Arithmetic on reals is 𝑂(1) again

• We can take the floor function of a real in 𝑂(1) time

• Hashing is 𝑂(1) time in expectation (see universal hashing)
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Closest Pair
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The closest pair problem

Problem (closest pair):  Given 𝑛 points 𝑃, define 𝐶𝑃(𝑃) to be the 
closest distance, i.e.

𝐶𝑃 𝑃 = min
𝑝,𝑞∈𝑃

𝑝 − 𝑞

Goal is to compute 𝐶𝑃(𝑃)
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A grid data structure

Let’s define a grid with size 𝑟

6

𝑟 2𝑟 3𝑟 4𝑟0

𝑟

2𝑟

3𝑟

4𝑟



How does this help?

• If the grid size is sufficiently large, closest pair will be in same cell, or 
in neighboring cells

• If the grid size is too large, there will be too many points per cell…
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Goal: Choose the right grid size.

• Want few points per cell, so that looking in a cell is fast

• Want the closest pair to be in neighboring cells so we find them fast



The right grid size

Claim (the right grid size): Given a grid with points 𝑃 and grid size 𝑟 =
𝐶𝑃(𝑃), no cell contains more than four points

Proof:
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An incremental approach

Key idea (incremental): Add the points one at a time

• Check neighboring cells to see if there’s a new closest pair

• If so, rebuild the grid with the new size

• Otherwise keep going
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A grid data structure

Invariant (grid size): Given a grid containing a set of points 𝑃, we want 
the grid size 𝑟 to always equal 𝐶𝑃(𝑃)

• MakeGrid(𝑝, 𝑞): Make a grid containing 𝑝 and 𝑞, with 𝑟 = 𝑝 − 𝑞

• Lookup(𝐺, 𝑝): Given a grid 𝐺 and point 𝑝 (not currently in the grid), 
we want to know whether 𝑝 is part of a new closest pair

• Insert(𝐺, 𝑝): Given a grid 𝐺 and point 𝑝, inserts 𝑝 and returns the grid 
size (which may have changed because of 𝑝)
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Implementing the grid

Issue: The number of grid cells could be unbounded…
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Implementing the grid

Implement MakeGrid(𝒑, 𝒒):
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Implementing the grid

Implement Lookup(𝑮, 𝒒):
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Implementing the grid

Implement Insert(𝑮, 𝒒):
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Runtime

Claim (runtime): The worst-case runtime of the incremental grid 
algorithm is 𝑂 𝑛2

Proof:
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Randomization to the rescue!!!



Randomized runtime

Claim (randomized incremental is fast): If we randomly shuffle the 
points, then run the incremental grid algorithm, it takes 𝑂(𝑛) time in 
expectation

Proof:
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Smallest enclosing circle
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The smallest enclosing circle

Problem (Smallest enclosing circle): Given 𝑛 ≥ 2 points in two 
dimensions, find the smallest circle that contains all of them
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Base cases

Base case (two points):
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Base cases

Base case (three points):
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Case 1: Obtuse angle Case 2: Acute angle



Three points and a circle

Fact (unique circle): Given three non-colinear points, there is a unique 
circle that goes through them
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The general case

Given 𝑛 > 3 points, how many circles do we need to consider?
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Theorem (three points is always enough): For any set of points, the 
smallest enclosing circle either touches two points 𝑝𝑖 , 𝑝𝑗 at a diameter, 

or touches three points 𝑝𝑖 , 𝑝𝑗 , 𝑝𝑗

In other words: For any set of points, there exists 𝑖, 𝑗, 𝑘, such that

𝑆𝐸𝐶 𝑝1, … , 𝑝𝑛 = 𝑆𝐸𝐶(𝑝𝑖 , 𝑝𝑗 , 𝑝𝑘)



Proof of theorem

Case 1 (no points):

23



Proof of theorem

Case 2 (one point):
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Proof of theorem

Case 3 (two point):
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Proof of theorem

Case 4 (three or more points):
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Brute force algorithms

Algorithm 1 (brute force):  Try all triples of points and find their 
smallest enclosing circle. Check whether this circle contains every 
point. Returns the smallest such circle.
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Algorithm 2 (better brute force):  Try all triples of points and find their 
smallest enclosing circle. Return the largest such circle.



Beating brute force: incremental

Incremental approach: Insert points one by one and maintain the 
smallest enclosing circle

When inserting 𝑝𝑖:

• Case 1: 𝑝𝑖 is inside the current circle. Great, do nothing!

• Case 2: 𝑝𝑖 is outside the current circle. Need to find the new one

28



Making incremental fast

Observation:  When we add 𝑝𝑖, if it is not in the current circle, then it is 
on the boundary of the new circle
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Incremental algorithm

SEC([𝑝1, 𝑝2, … , 𝑝𝑛]) = {

Let C be the smallest circle enclosing 𝑝1 and 𝑝2
for i = 3 to n do {

if 𝑝𝑖 is not inside 𝐶 then 𝐶 =

}

return 𝐶

}
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Incremental algorithm continued

31

SEC1( 𝑝1, 𝑝2, … , 𝑝𝑘 , 𝑞) = {

Let C be the smallest circle enclosing 𝑝1 and 𝑞

for i = 2 to k do {

if 𝑝𝑖 is not inside 𝐶 then 𝐶 =

}

return 𝐶

}



Incremental algorithm deeper again
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SEC2( 𝑝1, 𝑝2, … , 𝑝𝑘 , 𝑞1, 𝑞2) = {

Let C be the smallest circle enclosing 𝑞1 and 𝑞2
for i = 1 to k do {

if 𝑝𝑖 is not inside 𝐶 then 𝐶 =

}

return 𝐶

}



Runtime

Runtime (SEC2): SEC2 runs in 𝑂(𝑘) time

Runtime (SEC1): In the worst case, SEC1 runs in 𝑂(𝑘2) time

Runtime (SEC): In the worst case, SEC runs in 𝑂(𝑛3) time

33



Randomization to the rescue!!!

Claim (randomized SEC is fast):  If we randomly shuffle the points in 
SEC and SEC1, then SEC1 runs in 𝑂(𝑘) expected time and SEC runs in 
𝑂(𝑛) expected time
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Summary

• Randomized incremental algorithms are pretty great. We can turn 
slow brute force algorithms into expected linear-time algorithms!

• We got 𝑂 𝑛 time for closest pair and smallest enclosing circle

• Backward analysis helps us analyze the runtime of these randomized 
incremental algorithms
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