
Lecture 22: Computational Geometry II
Randomized incremental algorithms

1

𝑟 2𝑟 3𝑟 4𝑟0

𝑟

2𝑟

3𝑟

4𝑟

Goals for today

• Apply randomized incremental algorithms to geometry

• Give randomized incremental algorithms for two key problems:

• The closest pair problem

• The smallest enclosing circle problem

• Use backward analysis to analyze the runtime of these algorithms

2

Model and assumptions

• Points are real-valued pairs (𝑥, 𝑦)

• Arithmetic on reals is 𝑂(1) again

• We can take the floor function of a real in 𝑂(1) time

• Hashing is 𝑂(1) time in expectation (see universal hashing)

3

Closest Pair

4

The closest pair problem

Problem (closest pair): Given 𝑛 points 𝑃, define 𝐶𝑃(𝑃) to be the
closest distance, i.e.

𝐶𝑃 𝑃 = min
𝑝,𝑞∈𝑃

𝑝 − 𝑞

Goal is to compute 𝐶𝑃(𝑃)

5

A grid data structure

Let’s define a grid with size 𝑟

6

𝑟 2𝑟 3𝑟 4𝑟0

𝑟

2𝑟

3𝑟

4𝑟

How does this help?

• If the grid size is sufficiently large, closest pair will be in same cell, or
in neighboring cells

• If the grid size is too large, there will be too many points per cell…

7

Goal: Choose the right grid size.

• Want few points per cell, so that looking in a cell is fast

• Want the closest pair to be in neighboring cells so we find them fast

The right grid size

Claim (the right grid size): Given a grid with points 𝑃 and grid size 𝑟 =
𝐶𝑃(𝑃), no cell contains more than four points

Proof:

8

An incremental approach

Key idea (incremental): Add the points one at a time

• Check neighboring cells to see if there’s a new closest pair

• If so, rebuild the grid with the new size

• Otherwise keep going

9

A grid data structure

Invariant (grid size): Given a grid containing a set of points 𝑃, we want
the grid size 𝑟 to always equal 𝐶𝑃(𝑃)

• MakeGrid(𝑝, 𝑞): Make a grid containing 𝑝 and 𝑞, with 𝑟 = 𝑝 − 𝑞

• Lookup(𝐺, 𝑝): Given a grid 𝐺 and point 𝑝 (not currently in the grid),
we want to know whether 𝑝 is part of a new closest pair

• Insert(𝐺, 𝑝): Given a grid 𝐺 and point 𝑝, inserts 𝑝 and returns the grid
size (which may have changed because of 𝑝)

10

Implementing the grid

Issue: The number of grid cells could be unbounded…

11

Implementing the grid

Implement MakeGrid(𝒑, 𝒒):

12

Implementing the grid

Implement Lookup(𝑮, 𝒒):

13

Implementing the grid

Implement Insert(𝑮, 𝒒):

14

Runtime

Claim (runtime): The worst-case runtime of the incremental grid
algorithm is 𝑂 𝑛2

Proof:

15

Randomization to the rescue!!!

Randomized runtime

Claim (randomized incremental is fast): If we randomly shuffle the
points, then run the incremental grid algorithm, it takes 𝑂(𝑛) time in
expectation

Proof:

16

Smallest enclosing circle

17

The smallest enclosing circle

Problem (Smallest enclosing circle): Given 𝑛 ≥ 2 points in two
dimensions, find the smallest circle that contains all of them

18

Base cases

Base case (two points):

19

Base cases

Base case (three points):

20

Case 1: Obtuse angle Case 2: Acute angle

Three points and a circle

Fact (unique circle): Given three non-colinear points, there is a unique
circle that goes through them

21

The general case

Given 𝑛 > 3 points, how many circles do we need to consider?

22

Theorem (three points is always enough): For any set of points, the
smallest enclosing circle either touches two points 𝑝𝑖 , 𝑝𝑗 at a diameter,

or touches three points 𝑝𝑖 , 𝑝𝑗 , 𝑝𝑗

In other words: For any set of points, there exists 𝑖, 𝑗, 𝑘, such that

𝑆𝐸𝐶 𝑝1, … , 𝑝𝑛 = 𝑆𝐸𝐶(𝑝𝑖 , 𝑝𝑗 , 𝑝𝑘)

Proof of theorem

Case 1 (no points):

23

Proof of theorem

Case 2 (one point):

24

Proof of theorem

Case 3 (two point):

25

Proof of theorem

Case 4 (three or more points):

26

Brute force algorithms

Algorithm 1 (brute force): Try all triples of points and find their
smallest enclosing circle. Check whether this circle contains every
point. Returns the smallest such circle.

27

Algorithm 2 (better brute force): Try all triples of points and find their
smallest enclosing circle. Return the largest such circle.

Beating brute force: incremental

Incremental approach: Insert points one by one and maintain the
smallest enclosing circle

When inserting 𝑝𝑖:

• Case 1: 𝑝𝑖 is inside the current circle. Great, do nothing!

• Case 2: 𝑝𝑖 is outside the current circle. Need to find the new one

28

Making incremental fast

Observation: When we add 𝑝𝑖, if it is not in the current circle, then it is
on the boundary of the new circle

29

Incremental algorithm

SEC([𝑝1, 𝑝2, … , 𝑝𝑛]) = {

Let C be the smallest circle enclosing 𝑝1 and 𝑝2
for i = 3 to n do {

if 𝑝𝑖 is not inside 𝐶 then 𝐶 =

}

return 𝐶

}

30

Incremental algorithm continued

31

SEC1(𝑝1, 𝑝2, … , 𝑝𝑘 , 𝑞) = {

Let C be the smallest circle enclosing 𝑝1 and 𝑞

for i = 2 to k do {

if 𝑝𝑖 is not inside 𝐶 then 𝐶 =

}

return 𝐶

}

Incremental algorithm deeper again

32

SEC2(𝑝1, 𝑝2, … , 𝑝𝑘 , 𝑞1, 𝑞2) = {

Let C be the smallest circle enclosing 𝑞1 and 𝑞2
for i = 1 to k do {

if 𝑝𝑖 is not inside 𝐶 then 𝐶 =

}

return 𝐶

}

Runtime

Runtime (SEC2): SEC2 runs in 𝑂(𝑘) time

Runtime (SEC1): In the worst case, SEC1 runs in 𝑂(𝑘2) time

Runtime (SEC): In the worst case, SEC runs in 𝑂(𝑛3) time

33

Randomization to the rescue!!!

Claim (randomized SEC is fast): If we randomly shuffle the points in
SEC and SEC1, then SEC1 runs in 𝑂(𝑘) expected time and SEC runs in
𝑂(𝑛) expected time

34

Summary

• Randomized incremental algorithms are pretty great. We can turn
slow brute force algorithms into expected linear-time algorithms!

• We got 𝑂 𝑛 time for closest pair and smallest enclosing circle

• Backward analysis helps us analyze the runtime of these randomized
incremental algorithms

35

