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In this lecture, we will see how the technique of randomized incremental algorithms can be applied to solve
problems in computational geometry. We previously saw this same technique applied to linear programming
with Seidel’s 2D LP algorithm. We will once again use backwards analysis to prove bounds on the expected
running time of these algorithms.

Objectives of this lecture

In this lecture, we will

- see how randomized incremental algorithms can be used for computation geometry

- give an expected linear-time algorithm for the closest pair problem

- give an expected linear-time algorithm for the smallest enclosing circle problem

- analyze these algorithms using backwards analysis

1 Model and assumptions

In this lecture we make the following assumptions. Like last time, we want to operate on real numbers, but
we are now assuming a little bit more than last time.

- We assume the points are presented as real number pairs (x, y).

- We assume arithmetic on reals is accurate and runs in O(1) time.

- We will assume that we can take the floor function of a real in O(1) time.

- We also assume that hashing is O(1) time in expectation.

These assumptions (in this context) are reasonable, because the algorithms will not abuse this power.

2 The closest pair problem

Problem: Closest pair

For any set of points P , let CP(P ) be the closest pair distance in P , i.e.,

CP(P ) = min
p,q∈P
p ̸=q

∥p− q∥

Given a point set P , our goal is to compute CP(P ).

The naive algorithm of trying all pairs of points will cost O(n2) time. Our goal today is to come up with a
faster algorithm. We will see that with some nifty randomization, we can actually achieve linear time!

A “grid” data structure We’re going to define a “grid” data structure, and an API for it. The grid
(denoted G) stores a set of points (that we’ll call P ) inside square cells of size r× r. The number r is called
“the grid size of G”. The point (x, y) therefore goes in the grid cell (⌊x/r⌋, ⌊y/r⌋).
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Now how does this thing help us find the closest pair of points? Well, intuitively, if we choose the grid size
large enough, then the closest pair of points should end up in either the same grid cell, or in neighboring
grid cells. Of course, if the grid size is too large, then there will be too many points in some cells, and finding
the closest pair of points in a cell will take O(n2) time again...

So, our goal is to somehow figure out just the right grid size such that it is small enough for there to be very
few points per cell, but large enough such that the closest pair of points are in nearby cells. If we can do
that, we’ll find an efficient algorithm.

Choosing the right grid size Lets first focus on the criteria that we want the closest pair of points to
live in the same or in neighboring grid cells. If the grid size is much smaller than the distance between the
closest pair of points, then they might end up being very far away, so intuitively we want to choose the
the grid size r ≈ CP(P ). What if we just choose exactly r = CP(P )? I claim that this has all of the nice
properties we want.

Claim 1: The right grid size

Given a grid G with points P and grid size r = CP(P ), no cell contains more than four points.

Proof. Imagine splitting a given cell into four r/2-sized sub-boxes.

r/2

The diameter of each sub-box is
√
2r/2 < r, so none of these sub-boxes can have more than one point in it,

or that would imply that there exists a pair of points whose distance is less than r, which would contradict
that r = CP(P ). Therefore there are at most four points in each cell.
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Okay great, so the perfect grid size is just to pick r = CP(P ), and then we’re good! Oh wait... CP(P ) is
exactly what we were trying to compute in the first place... What can we do? Lets try to solve the problem
incrementally.

2.1 An incremental approach

We will start with just two points p1 and p2 and put them in a grid with r = ∥p − q∥. Then we will
continuously add the rest of the points into the grid, and if we violate the invariant that r is equal to the
closest pair distance, we will just throw away the old grid and build a new one from scratch. Lets go into a
bit more detail for each of these operations. Our grid will support the following API:

- MakeGrid(p, q): Make and return a new grid containing points p and q using r = ∥p − q∥ (the distance
between p and q) as the initial grid size.

- Lookup(G, p): p is a point, G is a grid. This returns two types of answers. Let r′ be the closest distance
from p to a point in P . If r′ < r then return r′. If r′ ≥ r return “Not Closest”. Note that Lookup() does
not need to compute r′ if r′ ≥ r. Essentially, the lookup function detects whether we have found a new
closest pair.

- Insert(G, p): G is a grid. p is a new point not in the grid. This inserts p into the grid. It returns the new
grid size.

Here’s an example Grid data structure satisfying the invariant.

!
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We now discuss how to implement this API. Note that the grid could have arbitrarily many cells depending
on the values of the point coordinates, so we can not afford to store them all explicitly. However, the vast
majority of them will be empty, so we can store the grid using a dictionary data structure, powered by a
hashtable to get O(1)-time operations. Specifically, we will maintain a hashtable whose keys are integer pairs
(i, j), representing grid cells in the grid. Given a point (x, y), it belongs to the cell with key (⌊x/r⌋, ⌊y/r⌋).

MakeGrid(p, q) is simple. Just create a blank table, set r = ∥p− q∥, and insert p and q .

Lookup(G, p) first computes the cell (i, j) where p belongs. It then looks in that cell, and the 8 surrounding
ones, and computes the distance between p and every point in those neighboring cells. Call the smallest
found distance r′. If r′ < r, then we have found a new closest pair, so we return r′. Otherwise, if r′ > r
then return “Not Closest”. This works because we know that if there is a point closer to p than r, it must
be in one of the 9 cells that are searched by this function:
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r

Also note that the running time of this is O(1) because it does 9 lookups in the hash table, and the total
number of points it has to consider is at most 36. This is because a cell contains at most 4 points by Claim 1.

Insert(G, p) works as follows. It first does a Lookup(G, p). If the result is “Not Closest” it just inserts p into
the data structure into the correct cell (i, j). This is correct, since it means that p does not create a new
closest pair, so the grid size should be unchanged. This is O(1) time. On the other hand if the Lookup()
returns r′ < r, then the algorithm has to throw away the current grid and start from scratch to build a new
grid with size r′. This takes O(i) time if there are i points now being stored in the data structure.

These algorithms are correct because they maintain the invariant that the grid size r is always equal to the
closest pair distance.

Runtime analysis In the worst case, every newly inserted point might cause the closest pair to change,
and hence require a regrid, so the runtime is

n∑
i=1

i = Θ(n2).

Unfortunately this is no better than the brute-force approach! But how likely is it that we get so unlucky to
have the closest pair change every iteration? What can we do to make this unlikely for any possible input?

2.2 Sariel Har-Peled’s randomized O(n) algorithm for closest pair

We can use the same approach as Seidel’s 2D LP algorithm! Lets randomly shuffle the input points, then
run the above algorithm. The claim is that by randomly shuffling, the probability that an insertion causes
the closest pair to change is low.

Algorithm: Randomized incremental closest pair

RandomizedClosestPair(P ) {
Randomly permute the points. Call the new ordering p1, p2, . . . , pn.
G = MakeGrid(p1, p2)
for i = 3 to n do {

r = Insert(G, pi)
}
return r

}

Claim: Randomized incremental closest pair is fast

The algorithm runs in expected O(n) time.

Proof. Recall the time to do Insert() is O(1) if the grid size does not change, and O(i) (i = the number of
points in the grid) if the grid size does change.

We use an argument similar to the one we used for Seidel’s LP algorithm, called “backward analysis”:
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Consider running the algorithm backwards. Here we are deleting points in order pn, pn−1, . . . , p3. When
deleting point i, the operation is O(1) if the closest pair distance does not change, and O(i) if it does. In
general if you remove a random point from a set of i points, the probability that the closest pair distance
changes is at most 2/i: if there is just one pair of points that achieves the minimum distance, then you
have to remove one of those two points to increase the minimum. If there is more than one pair, then the
probability is lower.

So the removal is costly (i.e. O(i)) with probability at most 2/i, and cheap O(1) with the remaining proba-
bility. Therefore the expected runtime of the ith insertion is

i− 2

i
×O(1)︸ ︷︷ ︸

Does not change

+
2

i
×O(i)︸ ︷︷ ︸

Does change

= O(1).

Thus the expected cost of the entire algorithm is O(n) by linearity of expectation.

3 The smallest enclosing circle problem

Problem: Smallest enclosing circle

Given n ≥ 2 points in two dimensions, find the smallest circle (by radius) that contains all of the
points.

The smallest enclosing circle is kind of like the convex hull. We are looking for a body that encloses all of
the given points, except that this time, instead of searching for a polygon, we are looking for a circle. For
notation purposes, lets define SEC(p1, . . . , pn) to be the smallest enclosing circle of the points p1, . . . , pn.

As usual, we will sweep edge cases under the rug by assuming that there are no sets of three colinear points
in our input. Before we dive right into the algorithm, lets look at some useful properties of circles.

3.1 Base cases and useful properties of circles

Two points Suppose we start with exactly two points p1 and p2. There are infinitely many possible
circles that enclose p1 and p2, and our algorithm can not try an infinite number of things, but we can restrict
ourselves to a more reasonable set of possibilities.

Here’s an idea that might seem obvious when we’re just considering two points, but turns out to be one of
the most powerful and useful observations when deriving computational geometry algorithms: pick a circle
that touches the points. If I give you a circle that encloses the two points but doesn’t touch them, then it
can’t be the SEC because I could shrink it and it will still contain the points.

How many circles are there that touch the points p1 and p2? Unfortunately there’s still infinitely many of
them, but there is a unique smallest circle that contains them, where p1 and p2 are on a diameter:

r C P Pa

C

r t P Pal
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Three points Three points is where things get interesting. In the case of two, there were infinitely many
possible circles that touch them, but it turns out that for three non colinear points, there exists a single
unique circle that touches them.

Claim 2: Three points make a circle

Given three non-colinear points, there exists a unique circle that touches them.

Exercise

Prove the claim above, that there is a unique circle that inscribes three non-colinear points.

Is this point always the smallest enclosing circle of the three points though? It might not be. There are two
cases, either the triangle is acute, and the smallest enclosing circle will touch all three points, or it is obtuse,
and the smallest enclosing circle will just touch two of them.

r C P Pa

C

r t P Pal

We can just try both cases, which is a constant number of choices, and we will have the smallest enclosing
circle for three points.

3.2 The general case

Now we come to the general case, given n > 3 points, how do we find the smallest enclosing circle? Like
before, we are faced with infinity many possible circles to choose from, so even if we wanted to implement
a brute-force approach, it is not clear how to. We need to somehow reduce our infinite set of choices to a
finite one... To do so, we will prove the following claim:

Claim 3: Three points defines the smallest enclosing circle

For any set of points, SEC(p1, . . . , pn) either touches two points pi and pj at opposite ends of a
diameter, or touches three points pi, pj , pk that form an acute triangle.

In other words, there exists i, j, k such that SEC(p1, . . . , pn) = SEC(pi, pj , pk).

Proof. We’ll consider a few cases:

1. No points: Suppose I give you an enclosing circle (a circle that contains all of the points) but it
doesn’t touch any of them. Then I can shrink the circle by some ε until it does touch something and
it still contains all the points, so it can’t be the SEC.

6



2. One point: Suppose I give you an enclosing circle that touches just one point. Then I can shrink the
circle by some ϵ and translate it so that it still touches that one point, so it can’t be the SEC.

3. Two points: Suppose an enclosing circle touches two points and these points are on opposite ends of
a diameter. Then this is a lower bound on the size of any enclosing circle since it must contain these
points, hence the circle is optimal. Suppose instead that the two points are not on opposite ends of a
diameter, i.e., there is a greater than 180 degree gap between them. Then once again, we can shrink
the circle by some ε and translate it.

4. Three or more points: If the circle touches at least three points but none of them form an acute
triangle, we can again shrink the circle and translate it.

Therefore an SEC must either touch two points at a diameter, or touch three points of an acute triangle.
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What this claim is saying is that the smallest enclosing circle is determined by just some subset of three of
the points in the input! So we do not have to try infinitely many possible circles to find the SEC, we have
reduced to a finite number of possibilities. This gives us an O(n3)-time brute-force algorithm: just try every
triple of points and find the smallest enclosing circle, then return the largest one.

Note that we return the largest one, not the smallest one, because the smallest one might not contain all
of the other points, but the largest one is guaranteed to, by Claim 3.

3.3 Beating brute force: an incremental algorithm

Continuing with the theme of this lecture, lets try to develop an incremental algorithm for the problem.
That means we will start with just two points and find their SEC. Then, one by one we will add in another
point and check whether it is contained within the current circle. If it is, we are good to continue. If it is
not, we must find the new smallest enclosing circle of all the points. If we are lucky (or clever), the algorithm
won’t need to do the slow case very often.

Building an incremental algorithm Suppose we’ve computed the SEC of p1, . . . , pi−1. How do we add
the next point pi? We have to consider two cases:

1. Case 1: pi is inside SEC(p1, . . . , pi−1): In this case, we don’t have to do anything because the circle still
contains all of the points, and adding a new point can not make the SEC smaller.

2. Case 2: pi is not inside SEC(p1, . . . , pi−1): This is the hard case. We could just decide to throw away
the current circle and find the new SEC from scratch with brute force, but this would end up being really
slow, even with the incremental approach, so we’re going to need something more sophisticated.

Here’s an observation that will help:

Claim: A new point locks in the new SEC

For a set of points p1, . . . , pi, if SEC(p1, . . . , pi−1) ̸= SEC(p1, . . . , pi), then pi is on the boundary of
the new SEC.

Proof. If pi were not on the boundary, then by Claim 3, the SEC is determined by either two points along
a diameter, or three points, but these points were all in the set before pi was added, so the SEC shouldn’t
have changed.

 

This allows us to improve on using brute force. If we insert a new point pi and discover that it is outside
the current SEC, we don’t need to completely go from scratch and spend O(i3) time, we could lock pi in
and just do O(i2) work to find the other two points. In fact, we will see momentarily that we can do even
better. To make this concrete, lets define a subroutine SEC1, which takes two parameters, a list of points
p1, . . . pi−1, and a point pi, and finds the smallest enclosing circle of p1, . . . , pi, but using the knowledge that
pi is definitely on the boundary. So, our algorithm for SEC currently looks like
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SEC([p1, p2, . . . , pn]) = {
let C be the SEC of p1 and p2 (formed by a diameter between p1 and p2)

for i = 3 to n do {
if pi is not inside C then C ← SEC1([p1, . . . , pi−1], pi)

}
return C

}

Implementing SEC1 We could implement SEC1 by trying all O(i2) pairs of other points and taking
the best SEC that results, but this would take O(i2) time. We can still do much better than this! How?
Same exact idea as the outer SEC algorithm! Lets solve SEC1 incrementally as well. Suppose we are given
SEC1([p1, . . . , pn], q) to solve.

- We can start with a circle around p1 and q, then incrementally add the remaining points, one by one.

- If a point pi is outside the current SEC, then we have to rebuild a new SEC.

- However, from the same argument as before, if this happens, we know for sure that pi is on the boundary
of the new one. So, we now need to solve the problem of finding the SEC of a set of points with two fixed
points pi and q. Hmm... time for another layer of indirection!

SEC1([p1, p2, . . . , pk], q) = {
let C be the SEC of p1 and q (formed by a diameter between p1 and q)

for i = 2 to k do {
if pi is not inside C then C ← SEC2([p1, . . . , pi−1], pi, q)

}
return C

}

Here, SEC2([p1, . . . pk], q1, q2) computes a smallest enclosing circle of {p1, . . . pk, q1, q2} with the knowledge
that q1 and q2 must be on the boundary.

Implementing SEC2 Continuing the pattern, the last level of indirection is the simplest. We have two
given points q1, q2 that are forced to be on the boundary, so we just need to loop through the k given points
and pick the best third point. No more sophisticated tricks needed at this point!

SEC2([p1, p2, . . . , pk], q1, q2) = {
let C be the SEC of q1 and q2 (formed by a diameter between q1 and q2)

for i = 1 to k do {
if pi is not inside C then C ← Circle that touches (pi, q1, q2)

}
return C

}

Runtime analysis SEC2 always takes exactly O(k) time no matter what. For SEC1, in the worst case,
every new point triggers the need to find a new SEC, so SEC1 takes

k∑
i=1

i = Θ(k2)

time. Similarly, in the worst case, SEC needs to find a new circle every iteration, so it takes
n∑

i=1

i2 = Θ(n3)

time. This is again, no better than brute force. Now its time to fix the problem with our favorite technique
of the day, randomization!
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3.4 Saving the day with randomization (again)

Lets add one additional line of code to SEC and SEC1 that randomly shuffles the points p, and then proceeds
exactly as written. The almost-too-good-to-believe claim is that this brings us right down to linear time!

Claim: Randomized incremental smallest enclosing circle is linear time

SEC1 runs in O(k) expected time, and SEC runs in O(n) expected time.

Proof. Since SEC2 uses no randomization, it still always runs in O(k) time deterministically. To analyze
SEC1 and SEC, we once again apply backward analysis. Recall from Claim 3 that two or three points
determine the SEC of the whole point set. So if we delete a point randomly among i points, the probability
that the SEC changes is at most 3

i . Therefore, the expected cost of one step of SEC1 is

3

i
×O(i) +

i− 3

i
×O(1) = O(1).

By linearity of expectation, the total expected cost of SEC1 is O(k). By the same reasoning, the expected
cost of one step of SEC is O(1), and by linearity of expectation, the total expected cost is O(n)

Remark: Fun fact: less randomness suffices

In the algorithm described, we randomly permuted the points p in SEC and SEC1. It turns out
that a single random permutation at the beginning of SEC is enough, and we don’t actually need to
permute inside SEC1. The proof becomes more difficult though because we don’t have independence
between different calls of SEC1 anymore, so we won’t prove it.

10


	Model and assumptions
	The closest pair problem
	An incremental approach
	Sariel Har-Peled's randomized O(n) algorithm for closest pair

	The smallest enclosing circle problem
	Base cases and useful properties of circles
	The general case
	Beating brute force: an incremental algorithm
	Saving the day with randomization (again)


