Lecture 22: Computational Geometry II

Randomized incremental algorithms

Goals for today

- Apply randomized incremental algorithms to geometry
- Give randomized incremental algorithms for two key problems:
- The closest pair problem
- The smallest enclosing circle problem
- Use backward analysis to analyze the runtime of these algorithms

Model and assumptions

- Points are real-valued pairs (x, y)
- Arithmetic on reals is $O(1)$ again
- We can take the floor function of a real in $O(1)$ time
- Hashing is $O(1)$ time in expectation (see universal hashing)

Closest Pair

The closest pair problem

Problem (closest pair): Given n points P, define $C P(P)$ to be the closest distance, i.e.

$$
C P(P)=\min _{p, q \in P}\|p-q\|
$$

Goal is to compute $C P(P)$

A grid data structure

Let's define a grid with size r

How does this help?

- If the grid size is sufficiently large, closest pair will be in same cell, or in neighboring cells
- If the grid size is too large, there will be too many points per cell...

Goal: Choose the right grid size.

- Want few points per cell, so that looking in a cell is fast
- Want the closest pair to be in neighboring cells so we find them fast

The right grid size

Claim (the right grid size): Given a grid with points P and grid size $r=$ $C P(P)$, no cell contains more than four points

Proof:

An incremental approach

Key idea (incremental): Add the points one at a time

- Check neighboring cells to see if there's a new closest pair
- If so, rebuild the grid with the new size
- Otherwise keep going

A grid data structure

Invariant (grid size): Given a grid containing a set of points P, we want the grid size r to always equal $C P(P)$

- $\operatorname{MakeGrid}(p, q)$: Make a grid containing p and q, with $r=\|p-q\|$
- Lookup(G, p): Given a grid G and point p (not currently in the grid), we want to know whether p is part of a new closest pair
- Insert(G, p): Given a grid G and point p, inserts p and returns the grid size (which may have changed because of p)

Implementing the grid

Issue: The number of grid cells could be unbounded...

Implementing the grid

Implement MakeGrid $(\boldsymbol{p}, \boldsymbol{q})$:

Implementing the grid

Implement Lookup $(\boldsymbol{p}, \boldsymbol{q})$:

Implementing the grid

Implement Insert($\boldsymbol{p}, \boldsymbol{q})$:

Runtime

Claim (runtime): The worst-case runtime of the incremental grid algorithm is $O\left(n^{2}\right)$

Proof:

Randomization to the rescue!!!

Randomized runtime

Claim (randomized incremental is fast): If we randomly shuffle the points, then run the incremental grid algorithm, it takes $O(n)$ time in expectation

Proof:

Smallest enclosing circle

The smallest enclosing circle

Problem (Smallest enclosing circle): Given $n \geq 2$ points in two dimensions, find the smallest circle that contains all of them

Base cases

Base case (two points):
\bullet

Base cases

Base case (three points):

Three points and a circle

Fact (unique circle): Given three non-colinear points, there is a unique circle that goes through them

The general case

Given $n>3$ points, how many circles do we need to consider?

Theorem (three points is always enough): For any set of points, the smallest enclosing circle either touches two points p_{i}, p_{j} at a diameter, or touches three points p_{i}, p_{j}, p_{j}

In other words: For any set of points, there exists i, j, k, such that

$$
\operatorname{SEC}\left(p_{1}, \ldots, p_{n}\right)=\operatorname{SEC}\left(p_{i}, p_{j}, p_{k}\right)
$$

Proof of theorem

Case 1 (no points):

Proof of theorem

Case 2 (one point):

Proof of theorem

Case 3 (two point):

Proof of theorem

Case 4 (three or more points):

Brute force algorithms

Algorithm 1 (brute force): Try all triples of points and find their smallest enclosing circle. Check whether this circle contains every point. Returns the smallest such circle.

Algorithm 2 (better brute force): Try all triples of points and find their smallest enclosing circle. Return the largest such circle.

Beating brute force: incremental

Incremental approach: Insert points one by one and maintain the smallest enclosing circle

When inserting p_{i} :

- Case 1: p_{i} is inside the current circle. Great, do nothing!
- Case 2: p_{i} is outside the current circle. Need to find the new one

Making incremental fast

Observation: When we add p_{i}, if it is not in the current circle, then it is on the boundary of the new circle

Incremental algorithm

```
\(\operatorname{SEC}\left(\left[p_{1}, p_{2}, \ldots, p_{n}\right]\right)=\{\)
    Let C be the smallest circle enclosing \(p_{1}\) and \(p_{2}\)
    for \(i=3\) to \(n\) do \(\{\)
        if \(p_{i}\) is not inside \(C\) then \(C=\)
    \}
    return \(C\)
\(\}\)
```


Incremental algorithm continued

```
\(\operatorname{SEC1}\left(\left[p_{1}, p_{2}, \ldots, p_{k}\right], q\right)=\{\)
    Let C be the smallest circle enclosing \(p_{1}\) and \(q\)
    for \(i=2\) to \(k\) do \{
        if \(p_{i}\) is not inside \(C\) then \(C=\)
    \}
    return C
\(\}\)
```


Incremental algorithm deeper again

```
SEC2([ }\mp@subsup{p}{1}{},\mp@subsup{p}{2}{},\ldots,\mp@subsup{p}{k}{}],\mp@subsup{q}{1}{},\mp@subsup{q}{2}{})=
    Let C be the smallest circle enclosing }\mp@subsup{q}{1}{}\mathrm{ and }\mp@subsup{q}{2}{
    for i=1 to k do {
        if }\mp@subsup{p}{i}{}\mathrm{ is not inside C then C=
    }
    return C
}
```


Runtime

Runtime (SEC2): SEC2 runs in $O(k)$ time

Runtime (SEC1): In the worst case, SEC1 runs in $O\left(k^{2}\right)$ time

Runtime (SEC): In the worst case, SEC runs in $O\left(n^{3}\right)$ time

Randomization to the rescue!!!

Claim (randomized SEC is fast): If we randomly shuffle the points in SEC and SEC1, then SEC1 runs in $O(k)$ expected time and SEC runs in $O(n)$ expected time

Summary

- Randomized incremental algorithms are pretty great. We can turn slow brute force algorithms into expected linear-time algorithms!
- We got $O(n)$ time for closest pair and smallest enclosing circle
- Backward analysis helps us analyze the runtime of these randomized incremental algorithms

