Lecture 20: Online Algorithms

Goals for today

- Understand the motivation and definition of online algorithms
- See some examples of online algorithms and their analyses:
 - The **rent-or-buy** problem
 - The list update problem
 - Using **potential functions** to analyze online algorithms

Motivation: Don't have all the information

- Recall: Approximation algorithms settle for a "pretty good" solution because the problem is too computationally hard
- Today, we will also settle for "pretty good" solutions, but for a different reason.
 - Your algorithm gets an input fed to it over time (very similar to streaming!)
 - It can not see the future, but must make a decision anyway
 - "Pretty good" performance is measured by comparing against an optimal omnipotent algorithm (it can see the future!)

Formal Definition

Definition (c-competitive algorithm):

```
ALG & c. OPT

(for all inputs)

C is called the competitive ratio
```

Rent-or-buy

Problem: You want to go skiing every day for snow season.

- Costs \$r to rent a pair of skis, or \$b to buy a pair of skis (\$r per day)
- Issue: Don't know how long snow season will last
- Goal: Decide each day whether to rent or buy.
- Example: Renting costs \$50 and buying costs \$500

Good strategies

Observation: All strategies can be characterized by "buy on day k"

Question: What is the worst-case input?

Example: Buy on day 6.
$$50 \times 5 + 500 = 750$$

 $OPT = 300$ $C = \frac{750}{300} = 2.5$

Example: Buy on day 10.
$$50 \times 9 + 500 = 950$$

OPT = 500

The best strategy

Strategy (Better-late-than-never): Buy on day

Claim: Better-late-than-never is 2-competitive

Proof: n is length of season

Case 1:
$$nr < b$$
: $ALG = OPT$

Case 2: $nr > b$

$$\frac{\left(\frac{b}{r}-1\right)r+b}{b} = \frac{b-r+b}{b} = \frac{2b-r}{b} = 2-\frac{r}{b} \le 2$$

The best strategy

Claim: Better-late-than-never is optimal for deterministic algorithms

Proof: Case: k more times
$$\frac{\left(\frac{b}{r}-1\right)r+kr+b}{b} > \frac{\left(\frac{b}{r}-1\right)r+b}{b}$$
Case: k fever times
$$\frac{\left(\frac{b}{r}-1\right)r-kr+b}{b-kr} = \frac{2b-r-kr}{b-kr} = 2+\frac{kr-r}{b-kr} > 2.$$

Summary of rent-or-buy

- Argued that all strategies are "buy on day k" for some k
- The *Better-late-than-never* algorithm buys on day $\frac{b}{r}$
 - This is point where buying would have been optimal in hindsight
- Better-late-than-never is 2-competitive
- Argued that better-late-than-never is optimal

List update

Problem: We have a list of n items $\{1,2,\ldots,n\}$ and two operations

- Access(x): Traverse to x in the list. The cost is the position of x
- Swap(x, y): Swap any two adjacent elements x and y. Costs 1

Goal: Process a sequence of Access requests at minimum possible cost

Example: Do no swaps. What is the competitive ratio?

Worst case Always Access (n)
$$ALQ = n \times t$$

 $OPT = n - 1 + t$
 $C = n$.

More examples

Example: Single-exchange. Move accessed item one closer to front

What's the competitive ratio?

Access
$$n-1$$
, n ,

 $C \approx \frac{n}{1.5} = \Omega (n)$

More examples

Example: Frequency count. Count frequency of access for each item. Keep list sorted by frequency

What's the competitive ratio?

$$n \times 1$$
, $n \times 2$, $n \times n$

ALG - $O(n^3)$

OPT = $O(n^2)$

Okay, time for a good algorithm

Claim: Move-to-front is a 4-competitive algorithm

Proof: Call the competitor
$$B$$
,
$$\bar{\Phi} = 2 \text{ (The # of Inversions between ALG's list)}$$
and $B's$ list)

Two key steps:

- 1. Ananlyze the AC of Access(x) of MTF and: AC \le 4. CB
- 2. Account for the cost of swaps of B (because this diffects potential!!)

Notation/setup:

Let
$$C_{MTF} = actual cost of MTF$$
, $C_B = actual cost of B$
Let $AC_{MTF} = C_{MTF} + \Delta \Phi = C_{MTF} + \Phi_{new} - \Phi_{old}$
Goal: Show $AC_{MTF} \le 4 \cdot C_B$

Analysis of Access(x):

$$C_{MTF} = \frac{1+|S|+|T|}{\sin d} + \frac{1|S|+|T|}{swaps} = 1+\frac{2}{(18|+|T|)}$$

$$C_{B} \gg |+|s|$$

$$\Delta \Phi = 2(|s|-|T|)$$

MTF

Analysis of Access(x) continued...

ACMTF =
$$C_{MTF} + \Delta \Phi$$

= $|+2(|s|+|T|) + 2(|s|-|T|)$
= $|+4|s|$
 $< +(|+|s|)$
 $< +C_{B}$

Analysis of B swapping:

$$C_{MTF} = 0$$
 $C_{B} = 1$

$$\Delta \Phi \leq 2$$

$$AC_{MTF} \leq 0 + 2 = 2 = 2 \cdot C_{B} \leq 4 \cdot C_{B}$$

Putting it together: Total MTF cost = ZACMTF + Dinitral - Drinal < > ACMTF < 54.CR = 4 (Total cost of B) => MTF is 4-competitive

Summary

- We defined online algorithms, algorithms that must make decisions without knowing the future (the full input)
- The Rent-or-buy problem as an example
- The list-update problem as an example
- Important: *Potential functions* were super useful for analyzing the list-update algorithm!!