Lecture 20:
Online Algorithms



Goals for today

* Understand the motivation and definition of online algorithms

* See some examples of online algorithms and their analyses:
* The rent-or-buy problem
* The list update problem

* Using potential functions to analyze online algorithms



Motivation: Don’t have all the information

* Recall: Approximation algorithms settle for a “pretty good” solution
because the problem is too computationally hard

* Today, we will also settle for “pretty good” solutions, but for a
different reason.
* Your algorithm gets an input fed to it over time (very similar to streaming!)
* |t can not see the future, but must make a decision anyway

* “Pretty good” performance is measured by comparing against an optimal
omnipotent algorithm (it can see the future!)



Formal Definition

Definition (c-competitive algorithm):

ALG £ ¢ OF

(fcrr all meM"$>
Cois calld tHe Compd'tﬁffe T o

T



Rent-or-buy

Problem: You want to go skiing every day for snow season.
* Costs $7 to rent a pair of skis, or $b to buy a pair of skis (.ﬂ"‘ P O{Wj >
* Issue: Don’t know how long snow season will last

e Goal: Decide each day whether to rent or buy.

« Example: Renting costs $50 and buying costs $500
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Good strategies

Observation: All strategies can be characterized by “buy on day k”

Question: What is the worst-case input?
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The best strategy

Strategy (Better-late-than-never): guj oh Ola/:j

Claim: Better-late-than-never is 2-competitive
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The best strategy

Claim: Better-late-than-never is optimal for deterministic algorithms

Proof: » k ymove times
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Summary of rent-or-buy

* Argued that all strategies are “buy on day k” for some k

* The Better-late-than-never algorithm buys on dayg

* This is point where buying would have been optimal in hindsight
* Better-late-than-never is 2-competitive

* Argued that better-late-than-never is optimal



List update

Problem: We have a list of n items {1,2, ..., n} and two operations

* Access(x): Traverse to x in the list. The cost is the position of x

* Swap(x, y): Swap any two adjacent elements x and y. Costs 1

Goal: Process a sequence of Access requests at minimum possible cost

Example: Do no swaps. What is the competitive ratio?
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More examples

Example: Single-exchange. Move accessed item one closer to front

What’s the competitive ratio?
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More examples

Example: Frequency count. Count frequency of access for each item.
Keep list sorted by frequency

What’s the competitive ratio?
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Okay, time for a good algorithm

Algorithm (Move-to-front): /\ ten ACC@SS (303 S
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Claim: Move-to-front is a 4-competitive algorithm
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Proof continued...

Two key steps:
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Proof continued...

Notation/setup:
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Proof continued...

Analysis of Access(x): 3
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Proof continued...

Analysis of Access(x) continued...
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Proof continued...

Analysis of B swapping:
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Proof continued...

Putting it together: O 26
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Summary

* We defined online algorithms, algorithms that must make decisions
without knowing the future (the full input)

* The Rent-or-buy problem as an example

* The list-update problem as an example

* Important: Potential functions were super useful for analyzing the
list-update algorithm!!
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