
Lecture 20:
Online Algorithms

1

Goals for today

• Understand the motivation and definition of online algorithms

• See some examples of online algorithms and their analyses:

• The rent-or-buy problem

• The list update problem

• Using potential functions to analyze online algorithms

2

Motivation: Don’t have all the information

• Recall: Approximation algorithms settle for a “pretty good” solution
because the problem is too computationally hard

• Today, we will also settle for “pretty good” solutions, but for a
different reason.
• Your algorithm gets an input fed to it over time (very similar to streaming!)

• It can not see the future, but must make a decision anyway

• “Pretty good” performance is measured by comparing against an optimal
omnipotent algorithm (it can see the future!)

3

Formal Definition

Definition (𝒄-competitive algorithm):

4

Rent-or-buy

Problem: You want to go skiing every day for snow season.

• Costs $𝑟 to rent a pair of skis, or $𝑏 to buy a pair of skis

• Issue: Don’t know how long snow season will last

• Goal: Decide each day whether to rent or buy.

• Example: Renting costs $50 and buying costs $500

5

Good strategies

Observation: All strategies can be characterized by “buy on day 𝑘”

Question: What is the worst-case input?

6

The best strategy

Strategy (Better-late-than-never):

Claim: Better-late-than-never is 2-competitive

Proof:

7

The best strategy

Claim: Better-late-than-never is optimal for deterministic algorithms

Proof:

8

Summary of rent-or-buy

• Argued that all strategies are “buy on day 𝑘” for some 𝑘

• The Better-late-than-never algorithm buys on day
𝑏

𝑟

• This is point where buying would have been optimal in hindsight

• Better-late-than-never is 2-competitive

• Argued that better-late-than-never is optimal

9

List update

Problem: We have a list of 𝑛 items {1,2, … , 𝑛} and two operations

• Access(𝑥): Traverse to 𝑥 in the list. The cost is the position of 𝑥

• Swap(𝑥, 𝑦): Swap any two adjacent elements 𝑥 and 𝑦. Costs 1

Goal: Process a sequence of Access requests at minimum possible cost

Example: Do no swaps. What is the competitive ratio?

10

More examples

Example: Single-exchange. Move accessed item one closer to front

What’s the competitive ratio?

11

More examples

Example: Frequency count. Count frequency of access for each item.
Keep list sorted by frequency

What’s the competitive ratio?

12

Okay, time for a good algorithm

Algorithm (Move-to-front):

Claim: Move-to-front is a 4-competitive algorithm

Proof:

13

Proof continued…

Two key steps:

1.

2.

14

Proof continued…

Notation/setup:

15

Proof continued…

Analysis of Access(x):

16

Proof continued…

17

Analysis of Access(x) continued…

Proof continued…

Analysis of B swapping:

18

Proof continued…

19

Putting it together:

Summary

• We defined online algorithms, algorithms that must make decisions
without knowing the future (the full input)

• The Rent-or-buy problem as an example

• The list-update problem as an example

• Important: Potential functions were super useful for analyzing the
list-update algorithm!!

20

