Lecture 20:
Online Algorithms

Goals for today

* Understand the motivation and definition of online algorithms

* See some examples of online algorithms and their analyses:
* The rent-or-buy problem
* The list update problem

* Using potential functions to analyze online algorithms

Motivation: Don’t have all the information

* Recall: Approximation algorithms settle for a “pretty good” solution
because the problem is too computationally hard

* Today, we will also settle for “pretty good” solutions, but for a
different reason.
* Your algorithm gets an input fed to it over time (very similar to streaming!)
* |t can not see the future, but must make a decision anyway

* “Pretty good” performance is measured by comparing against an optimal
omnipotent algorithm (it can see the future!)

Formal Definition

Definition (c-competitive algorithm):

ALG £ ¢ OF

(fcrr all meM"$>
Cois calld tHe Compd'tﬁffe T o

T

Rent-or-buy

Problem: You want to go skiing every day for snow season.
* Costs $7 to rent a pair of skis, or $b to buy a pair of skis (.ﬂ"‘ P O{Wj >
* Issue: Don’t know how long snow season will last

e Goal: Decide each day whether to rent or buy.

« Example: Renting costs $50 and buying costs $500

Sthrod BUj immeolm/«dﬂ: 500 / 50 = /O‘CDMf oy
pent Joretr © 50~N / SO0 — o0

Good strategies

Observation: All strategies can be characterized by “buy on day k”

Question: What is the worst-case input?
Scoson ends on R+ |

Example : Bu3 on OLW:) b. 50x5 +500=750 e
OPT= 300 (= —Zo6=2.5

Example: Buwy on daw (0. S0-9-+500 = 450 4
OPT = 500

The best strategy

Strategy (Better-late-than-never): guj oh Ola/:j

Claim: Better-late-than-never is 2-competitive
Proof: n s lengV% oﬁ Seodon

Case 1 NT < b+ ALG = OPT
C_OLSQ. 2.: NT >/[)
(=-r+«b b-7+i
____,____/—"—’:
L b

(

The best strategy

Claim: Better-late-than-never is optimal for deterministic algorithms

Proof: » k ymove times

(bodrekreb (Greb
) b
C&S»Q_: b GPW H mes
L2 VO . _
L,r ,>’Y ko [;:Eé ?ﬁ:1+l€TT>2
b~k bk R ™

Summary of rent-or-buy

* Argued that all strategies are “buy on day k” for some k

* The Better-late-than-never algorithm buys on dayg

* This is point where buying would have been optimal in hindsight
* Better-late-than-never is 2-competitive

* Argued that better-late-than-never is optimal

List update

Problem: We have a list of n items {1,2, ..., n} and two operations

* Access(x): Traverse to x in the list. The cost is the position of x

* Swap(x, y): Swap any two adjacent elements x and y. Costs 1

Goal: Process a sequence of Access requests at minimum possible cost

Example: Do no swaps. What is the competitive ratio?

\/J(nsf CASZ Aflw-wafg AC/C&&S (V\j ALQ: N>t
OPT =nNn-|+¢t

C=n

10

More examples

Example: Single-exchange. Move accessed item one closer to front

What’s the competitive ratio?
Pecers N- ‘ n, ..

C =~ -ﬂ—CM

11

More examples

Example: Frequency count. Count frequency of access for each item.
Keep list sorted by frequency

What’s the competitive ratio?

N1 N2 nsn Alc. - (9(ﬂ3> |
OPT= B(n*)

12

Okay, time for a good algorithm

Algorithm (Move-to-front): /\ ten ACC@SS (303 S
o« towards the front ﬁ S

Claim: Move-to-front is a 4-competitive algorithm

Proof: (h the Competiber B/

@ = 2 (Th #oj nitkons betwesn AL lict
and B's lfsﬁ}

Proof continued...

Two key steps:

1. Aﬂmljze the AC ojf ACC%(DCB of MTF
sk AC < Y% Cg

2 Accoum%mm‘djsmaj <
([becowse this affects ft)#@rM ‘,l.)

Proof continued...

Notation/setup:
Lok Curr = actued cot of MTF | Cg= ached covt of B

Lt ACure= Curr v B2 = Crre s Qpeww - 3,4
Ctvall SW ACMTF £ LfCB

Proof continued...

Analysis of Access(x): 3

Sz §items befor 5 m MTF & befoeoc n B

[I=] 3
T

[— |><[| MTF
)

T: flPe/m/s 66;%4& In MTF & afwr x In B§

=

Cure* w +w= l+5(ls|*l"r\>L

Jind S WMPS

AB =2(1s1-1T1)

16

Proof continued...

Analysis of Access(x) continued...

ACute = Curr+ A D
= |+ 2(|sl+)’r))+ Z(ISJ—JTIB

|+ 41s]
(l+ lSl)

Ly
T Cg

1\

IN /N

Proof continued...

Analysis of B swapping:
CmTF = 0O CB = j_
Ad § 2

ACMTFéO"’Z = Qt 2C3

18

Proof continued...

Putting it together: O 26
TokeA MTF cost = Z ACm1e + %' %w(

< Z ACuTF

$ Z 4 Cg

19

Summary

* We defined online algorithms, algorithms that must make decisions
without knowing the future (the full input)

* The Rent-or-buy problem as an example

* The list-update problem as an example

* Important: Potential functions were super useful for analyzing the
list-update algorithm!!

20

