The Multiplicative Weights
Algorithm

David Woodruff

* n “experts” predict an outcome on each day

* Expert = someone with an opinion, not necessarily someone who
knows anything

* For example, the experts could try to predict the stock market

Expt 1 Expt 2 Expt 3 neighbor's dog | truth

down up up up up
down up up down down

* n “experts” predict an outcome on eachof Tdays,t=1, ..., T

* On day t, the i-th expert predicts outcome outit

e On day t, you see out!, ..., out! and make your prediction guess®
* Then you see the actual outcome out' on day t

* You are correct if guesst = out' and wrong otherwise

* Goal: if the best expert is wrong on M days, you want to be wrong on
at most M days, plus a little bit

* Don’t make assumptions on the input

* Don’t assume future looks like the past

* You want to do as well as the best single expert in hindsight

How should you choose your guess on each day?

» Suppose at least one expert is perfect, i.e., never makes a mistake
* Don’t know which one

* Suppose each expert predicts one of two values: O or 1
* Stock market will go up or down

* Can we find a strategy that makes no more than [lIg, n| mistakes?

* Majority-and-halving: On each day, take the majority vote of all experts
* Each time you’re wrong, you can remove at least half the experts
* After |lg, n| mistakes you’re left with the perfect expert

e Same guarantee if experts predict more than 2 values
* You choose most frequent prediction. If wrong, at least half the experts are wrong

Claim: in the worst case, any deterministic strategy makes Ig, n mistakes
Proof: adversary method

Day 1: make the first n/2 experts say 0, and the second n/2 experts say 1

* If predictor outputs 0, then say the best expert outputs 1

* If predictor outputs 1, then say the best expert outputs O

* Perfect expert is either in [1, n/2] or in [n/2+1, n]
Day 2: in each interval [1, n/2] and [n/2+1, n], make first half of the experts say 0 and second
half of the experts say 1

* If predictor outputs 0, then say the best expert outputs 1

* If predictor outputs 1, then say the best expert outputs O

» Perfect expert is either in [1, n/4], [n/4+1, n/2], [n/2+1, 3n/4], or [3n/4+1, n]

Any deterministic strategy is incorrect on at least 1g, n days

Suppose best expert makes M mistakes
How can we guarantee we make at most (M+1)(log, n + 1) mistakes?

Run Majority-and-Halving, but after throwing away all experts, bring them
all back in and start over

In each “phase”, each expert makes at least 1 mistake, and you make at
most log, n + 1 mistakes

At most M finished phases, plus the last unfinished one

* If best expert makes M mistakes, we make at most (M+1)(log, n+ 1) =
O(M log, n) mistakes

* Can’t do better than best expert, who makes M mistakes
* Suppose only one expert who always says 1 and is wrong M times

* Can’t do better than log, n mistakes

* But can we make at most ® M + log, n mistakes instead of ® M - log, n?

* Throwing away an expert when it makes a mistake is too drastic
* Assign weight w; to i-th expert. Initialize all weights to 1

* On t-th day, compute sum of weights of experts who say 0, and sum
of weights of experts who say 1

* Choose outcome with larger weight

* If an expert is wrong on day t, cut its weight in half

* Theorem: If the best expert makes M mistakes, then the weighted
majority algorithm makes at most 2.41(M + log, n) mistakes!

* Proof: Let ® = },; wj. Initially @ = n

_ 3
* When we make a mistake, @y < i Doiq

At least half of the weight (which made the majority prediction) gets halved
(because it made a mistake)

* If we don’t make a mistake, o < P14

, . 3\ ™M 3\™
* If we’ve made m mistakes so far, @ < (Z) c Djpie = (Z) ‘N

M
. : 1
* Best expert i makes at most M mistakes, so @ = Wit = (5)

* So G)M < Dfing < G)m ‘n, or (g)m <2M.q

* Taking logs, m < Ml an 2.41(M + log, n)

2
og: 1)

* |f best expert makes a mistake 10% of the time, we make a mistake 24% of the
time, plus ((log, n) /T) %, which is negligible with enough days

* Only change: if an expert is wrong on day t, multiply its weight by 1 — €
* Still choose outcome given by the majority weight of experts in each day

* Theorem: If the best expert makes M mistakes, then the weighted
majority algorithm makes at most 2(1 + €)M + O(logzn

-) mistakes

Each time we make a mistake, @ oy < (1 — g) - Do
e At least half of the weight gets scaled by 1 — €

m m
If we’ve made m mistakes, @i < (1 — 5) c Dipit = (1 — E) n
beinalz Wi = (1 - E)M

n

1
(1—e)m = (1-eM

2

m
(1—eM < bgpa < (1 - E) n or

SomlnLeS M-lni+lnn

2
e Use lnie > § and lni <e+e’foree [0,%], and multiply both sides by%

2Inn

em <2M(1+e€)+

€

* Theorem: If the best expert makes M mistakes, then the weighted majority algorithm makes at
most 2(1 + €)M + O(logTZn) mistakes!

* If best expert is wrong 10% of the time, we’re wrong 20% of the time
e 2M mistakes are necessary for any deterministic algorithm:
» Suppose we have two experts - one always says 0 and one always says 1

* If algorithm is deterministic, the adversary knows what prediction the algorithm will make on
each day, so it can choose the opposite outcome

* So algorithm incorrect on all days, but one expert is correct on at least half of the days

* Assign weight w; to i-th expert. Initialize all weights to 1

. . oo i says 1 Wi . .
* On each day, predict 1 with probability > w and predict 0 otherwise
* Equivalently, pick a random expert i with probability Zw‘jv and choose that
i

expert’s outcome

* When an expert makes a mistake, multiply its weight by 1 — €

* Theorem: If the best expert makes M mistakes, then the expected

number of mistakes of the rlandomized weighted majority algorithm
nn

makes at most (1 + €)M + —

* Previous 2M lower bound only applies to deterministic algorithms
* Let ® = }; wj. Initially @ = n

* Having fixed the outcome on all days, the potential varies
deterministically

* Let F; be the fraction of total weight on the t-th day on experts that make
a mistake on that day

* The expected number of mistakes we make is). F;
* Onday t: Ppeyw = Pgiq - (1 —Fp) + Pgjq - Fe(1 —€) = Pg1g (1 —€-Fp)
e Oppar =10 [[((1 —€-F) <n-e€2tFtysing 1 + x < e* for all x

* Also, @fing = (1 — E)M

* Have shown: (1 —)M < gy < n-e €2kt

* Taking natural logs, €), F <M lni + Inn

* Using In— < € + €2 for € € |0, %], and dividing both sides by € we get:

1—€

In n

Expected number of mistakes =). Fy < M(1 + ¢€) + —

Inn

Expected number of mistakes = }.; F; < M(1 + €) + —

In n

Best expert makes at most T mistakes, so), Fi < M+ €T + —

Let M/T be optimal “error rate”

. . In
Our expected error rate is at most optimal error rate + € + —

. In \1/2 , In \1/2
Setting € = (T) , our error rate < optimal rate + 2 (T)

The last term is called the “regret”. As T gets larger, the regret goes to O

