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Lecture #16: Linear Programming III last changed: November 3, 2022

In this lecture we discuss the general notion of Linear Programming Duality, a powerful tool that can allow
us to solve some linear programs easier, gain theoretical insights into the properties of a linear program, and
has many more applications that we might see later in the course. We will show how duality connects to
some topics we have already seen, like minimax optimal strategies in zero-sum games.

Objectives of this lecture

In this lecture, we will

- Motivate and define the idea of the dual of a linear program

- See a general method for converting any linear program into its dual program

- Learn some powerful theorems that tell us about the behavior of a linear program and its dual

- See how duality can teach us about minimax optimal strategies for zero-sum games

1 The Dual Program as an Upper Bound
Consider the following LP which is written in standard form.

maximize 2x1 + 3x2

s.t. 4x1 + 8x2 ≤ 12

2x1 + x2 ≤ 3

3x1 + 2x2 ≤ 4

x1, x2 ≥ 0

(1)

Here it is in a diagram which shows each constraint, the feasible region shaded in gray, and the objective
direction as a red arrow.

4x1 + 8x2 ≤ 12

2x1 + x2 ≤ 3

3x1 + 2x2 ≤ 4

max 2x1 + 3x2

Rather than try to solve the LP using an algorithm directly, we are going to do an experiment. Lets see if
we can figure out some bounds on the objective value, and use those to hone in on the optimal value. How
can we bound the objective? Well the only other information that we have are the constraints, so lets use
them! Lets refer to the optimal objective value as OPT.
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- First, since x1, x2 ≥ 0, we can notice that the left-hand equation of the first constraint (4x1 + 8x2) must
be bigger than the objective (2x1 + 3x2), in other words, we can write

2x1 + 3x2︸ ︷︷ ︸
objective
function

≤ 4x1 + 8x2 ≤ 12︸ ︷︷ ︸
first constraint

Note that the left-hand side is the objective function and the right hand side is the first constraint. So we
therefore know that OPT ≤ 12. That’s a start. Can we get a tighter bound?

- Yes, the first constraint is more than double the objective function, so we can write a tighter bound by
using just half of the constraint

2x1 + 3x2︸ ︷︷ ︸
objective
function

≤ 1
2 (4x1 + 8x2) ≤ 6︸ ︷︷ ︸

half of the
first constraint

This gives us a bound of OPT ≤ 6. Can we do better? Maybe by combining multiple constraints!

- We want to combine some constraints such that we get as close to a coefficient of 2 for x1 and a coefficient
of 3 for x2. By inspection, we can see that if we add the first and second constraint, we will have 6x1+9x2,
which is exactly three times our objective function, so lets try one third of that combination.

2x1 + 3x2︸ ︷︷ ︸
objective
function

≤ 1
3 ((4x1 + 8x2) + (2x1 + x2)) ≤ 5︸ ︷︷ ︸

one third of the
first two constraints

Note that we get 5 on the right-hand side because we sum the right-hand sides of the original constraints
to get 12 + 3 = 15, then take one third of it. So we know that OPT ≤ 5.

In each of these cases we take a positive linear combination of the constraints, looking for better and better
bounds on the maximum possible value of 2x1 + 3x2. Why positive? Because if we multiply by a negative
value, the sign of the inequality changes.

1.1 The tightest possible bound

After playing with this experiment for a bit, the natural question that arises is how do we find the tightest
lower bound that can be achieved with this method, i.e., by writing down a a linear combination of the
constraints? This is just another algorithmic problem, and we can systematically solve it, by letting y1, y2, y3
be the (unknown) coefficients of our linear combination. So our goal is to write the combination like so

y1(4x1 + 8x2) + y2(2x1 + x2) + y3(3x1 + 2x2) ≤ 12y1 + 3y2 + 4y3,

such that the value on the right-hand side is as small as possible. This sounds like just another linear
program! To bound the original objective function, we require that the coefficients of x1 add up to at least
2, and the coefficients of x2 add up to at least 3. We can write these requirements down as a linear program.

minimize 12y1 + 3y2 + 4y3

s.t. 4y1 + 2y2 + 3y3 ≥ 2

8y1 + y2 + 2y3 ≥ 3

y1, y2, y3 ≥ 0

(2)

This is indeed an LP! We refer to this LP (2) as the “dual” and the original LP (1) as the “primal”. We
designed the dual to serve as a method of constructing an upper bound on the optimal value of the primal, so if
y is a feasible solution for the dual and x is a feasible solution for the primal, then 2x1+3x2 ≤ 12y1+3y2+4y3.
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This serves as an upper bound, but what happens if we make it tight? If we can find two feasible solutions
x and y, that make these equal, then we know we have found the provably optimal values of these LPs. In
this case the feasible solutions x1 = 1

2 , x2 = 5
4 and y1 = 5

16 , y2 = 0, y3 = 1
4 give us a value and matching

upper bound of 4.75, which therefore must be the optimal value.

Exercise: The dual of the dual

The dual LP is a minimization LP, where the constraints are of the form fi(x) ≥ ci. You can try
to give lower bounds on the optimal value of this LP by taking positive linear combinations of these
constraints. E.g., argue that

12y1 + 3y2 + 4y3 ≥ 4y1 + 2y2 + 3y2 ≥ 2

(since yi ≥ 0 for all i) and
12y1 + 3y2 + 4y3 ≥ 8y1 + y2 + 2y3 ≥ 3

and

12y1 + 3y2 + 4y3 ≥ 2

3
(4y1 + 2y2 + 3y2) + (8y1 + y2 + 2y3) ≥

4

3
+ 3 = 4

1

3
.

Formulate the problem of finding the best lower bound obtained by linear combinations of the given
inequalities as an LP. Show that the resulting LP is the same as the primal LP (1), in other words,
the dual of the dual gives you back the primal LP you started with.

Exercise: Another dual of the dual

Consider the “primal” LP below on the left:

maximize 7x1 − x2 + 5x3

s.t. x1 + x2 + 4x3 ≤ 8

3x1 − x2 + 2x3 ≤ 3

2x1 + 5x2 − x3 ≤ −7

x1, x2, x3 ≥ 0

minimize 8y1 + 3y2 − 7y3

s.t. y1 + 3y2 + 2y3 ≥ 7

y1 − y2 + 5y3 ≥ −1

4y1 + 2y2 − y3 ≥ 5

y1, y2, y3 ≥ 0

Show that the problem of finding the best upper bound obtained using linear combinations of the
constraints can be written as the LP above on the right (the “dual” LP). Also, now formulate the
problem of finding a lower bound for the dual LP. Show that you get the primal LP back again.

Exercise: The dual from not-standard form

In the examples above, the maximization LPs had constraints of the form lhsi ≤ rhsi, and the rhs
were all scalars, so taking positive linear combinations gave us blah ≤ number, i.e., an upper bound
as we wanted. However, suppose the primal LP has some “nice” constraints lhsi ≤ rhsi and others
are “not nice” lhsi ≥ rhsi, e.g., like the left one below. Show that the dual has non-positive variables
for the non-nice constraints. For example,
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maximize 7x1 − x2 + 5x3

s.t. x1 + x2 + 4x3 ≤ 8

3x1 − x2 + 2x3 ≥ 3

x1, x2, x3 ≥ 0

minimize 8y1 + 3y2

s.t. y1 + 3y2 ≥ 7

y1 − y2 ≥ −1

4y1 + 2y2 ≥ 5

y1 ≥ 0, y2 ≤ 0

Another way is to replace lhsi ≥ rhsi by the equivalent constraint (−lhsi) ≤ (−rhsi) and get an LP
with only nice constraints. Show that the dual for this LP is equivalent to the dual for the original.

2 A General Formulation of the Dual

Consider the examples/exercises above. In all of them, we started off with a “primal” maximization LP:

maximize cTx (3)

subject to Ax ≤ b

x ≥ 0,

The constraint x ≥ 0 is just short-hand for saying that the x variables are constrained to be non-negative.1

And to get the best upper bound we generated a “dual” minimization LP:

minimize rTy (4)

subject to Py ≥ q

y ≥ 0,

The important thing is: this matrix P , and vectors q, r are not just any vectors. Look carefully: P = AT .
q = c and r = b. The dual is in fact:

Claim: The dual of a linear program

The dual of the standard form LP (4) is

minimize yTb (5)

subject to yTA ≥ cT

y ≥ 0,

And if you take the dual of (5) to try to get the best lower bound on this LP, you’ll get (4). The dual
of the dual is the primal. The dual and the primal are best upper/lower bounds you can obtain as linear
combinations of the inputs.

The natural question is: maybe we can obtain better bounds if we combine the inequalities in more compli-
cated ways, not just using linear combinations. Or do we obtain optimal bounds using just linear combina-
tions? In fact, we get optimal bounds using just linear combinations, as the next theorems show.

1We use the convention that vectors like c and x are column vectors. So cT is a row vector, and thus cTx is the same as
the inner product c · x =

∑
i cixi. We often use cTx and c · x interchangeably. Also, a ≤ b means component-wise inequality,

i.e., ai ≤ bi for all i.
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2.1 The Theorems

When we derived the dual linear program, we used it as a means to provide upper bounds on the primal LP.
We can formally prove that it indeed does just that. This fact is called weak duality.

Theorem 1: Weak Duality

If x is a feasible solution to the primal LP (4) and y is a feasible solution to the dual LP (5) then

cTx ≤ yTb.

Proof. This follows by applying the constraints of the primal and dual LPs in (4) and (5) and the fact that
x ≥ 0 and y ≥ 0. Since yTA ≥ cT , we can plug this into the objective cTx and get

cTx ≤ (yTA)x.

Now we can move the brackets (associativity), and use the fact that Ax ≤ b, to get

(yTA)x = yT (Ax) ≤ yT b.

The amazing (and deep) result here is to show that the dual actually gives a perfect upper bound on the
primal (assuming some mild conditions).

Theorem 2: Strong Duality Theorem

Suppose the primal LP (4) is feasible (i.e., it has at least one solution) and bounded (i.e., the optimal
value is not ∞). Then the dual LP (5) is also feasible and bounded. Moreover, if x∗ is the optimal
primal solution, and y∗ is the optimal dual solution, then

cTx∗ = (y∗)Tb.

In other words, the maximum of the primal equals the minimum of the dual.

We will not prove Theorem 2 in this course, though the proof is not difficult. But let’s give a geometric
intuition of why this is true in the next section. Why is this useful? If I wanted to prove to you that x∗ was
an optimal solution to the primal, I could give you the solution y∗, and you could check that x∗ was feasible
for the primal, y∗ feasible for the dual, and they have equal objective function values.

This relationship is like in the case of s-t flows: the max flow equals the minimum cut. Or like in the case of
zero-sum games: the payoff for the optimal strategy of the row player equals the (negative) of the payoff of
the optimal strategy of the column player. Indeed, both these things are just special cases of strong duality!

2.2 Using duality to determine feasibility and boundedness

In addition to helping us bound feasible solutions to our LPs, duality can also be used as a tool to determine
when certain programs are feasible or infeasible, or perhaps show that they are bounded or unbounded.

- If the primal is feasible and bounded, strong duality tells us that the dual is also feasible and bounded.

- Suppose the primal (maximization) problem is unbounded. What can duality tell us? Weak duality says
cTx ≤ bT y... If there existed any feasible y for the dual, this would imply that the primal is bounded, and
hence by the contrapositive, if the primal is unbounded, then the dual must be infeasible. (This should
make intuitive sense, the point of the dual was to provide an upper bound on the primal. If the primal is
unbounded, then we can’t find an upper bound.)
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- By the exact same logic (reversed), if the dual is unbounded, since the primal is a lower bound on the
dual, the primal must be infeasible.

- Can both the primal and dual be unbounded? No, because as the two previous points show, if one of them
is unbounded, then the other is infeasible, and if a program is infeasible, it certainly can not be unbounded.

We can use these facts to represent all of the possible situations in a table like so:

Dual

Inf F&B Unb

P
ri
m
a
l Inf ✓ X ✓

F&B X ✓ X

Unb ✓ X X

Here, Inf means infeasible, F&B means feasible and bounded, and Unb means unbounded. The only
scenario that duality does not cover for us is the top-left cell, can an LP and its dual both be infeasible?

Exercise: Both primal and dual can be infeasible

Find an LP that is infeasible such that its dual is also infeasible.

Remark: Usefulness

This table has some very useful implications. If we have an LP for some problem, we might want
to prove conditions on when it is feasible or infeasible. Directly proving that the LP is infeasible
might be too difficult. Instead, if we can write the dual program and give a proof that the dual is
unbounded, then we have indirectly proven that the primal is infeasible! A useful trick.

2.3 The Geometric Intuition for Strong Duality

To give a geometric view of the strong duality theorem, consider an LP of the following form:

maximize cTx

subject to Ax ≤ b

x ≥ 0

For concreteness, let’s take the following 2-dimensional LP:

maximize x2

subject to − x1 + 2x2 ≤ 3

x1 + x2 ≤ 2

−2x1 + x2 ≤ 4

x1, x2 ≥ 0

If c := (0, 1), then the objective function wants to maximize c ·x, i.e., to go as far up in the vertical direction
as possible. As we have already argued before, the optimal point x∗ must be obtained at the intersection
of two constraints for this 2-dimensional problem (n tight constraints for n dimensions). In this case, these
happen to be the first two constraints.
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If a1 = (−1, 2), b1 = 3 and a2 = (1, 1), b2 = 2, then x∗ is the (unique) point x satisfying both a1 · x = b1
and a2 · x = b2. Indeed, we’re being held down by these two constraints. Geometrically, this means that
c = (0, 1) lies “between” these the vectors a1 and a2 that are normal (perpendicular) to these constraints.

Consequently, c can be written as a positive linear combination of a1 and a2. (It “lies in the cone formed
by a1 and a2.”) I.e., for some positive values y1 and y2,

c = y1a1 + y2a2.

Great. Now, take dot products on both sides with x∗. We get

c · x∗ = (y1 a1 + y2 a2) · x∗

= y1(a1 · x∗) + y2(a2 · x∗)

= y1b1 + y2b2

Defining y = (y1, y2, 0, . . . , 0), we get

optimal value of primal = c · x∗ = b · y ≥ value of dual solution y.

The last inequality follows because

- the y we found satisfies c = y1a1 + y2a2 =
∑

i yiai = ATy, and hence y satisfies the dual constraints
yTA ≥ cT by construction.

In other words, y is a feasible solution to the dual, has value b ·y ≤ c ·x∗. So the optimal dual value cannot
be less. Combined with weak duality (which says that c · x∗ ≤ b · y), we get strong duality

c · x∗ = b · y.

Above, we used that the optimal point was constrained by two of the inequalities (and that these were not
the non-negativity constraints). The general proof is similar: for n dimensions, we just use that the optimal
point is constrained by n tight inequalities, and hence c can be written as a positive combination of n of the
constraints (possibly some of the non-negativity constraints too).
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3 Example: Zero-Sum Games
Consider a 2-player zero-sum game defined by an n-by-m payoff matrix R for the row player. That is, if the
row player plays row i and the column player plays column j then the row player gets payoff Rij and the
column player gets −Rij . To make this easier on ourselves (it will allow us to simplify things a bit), let’s
assume that all entries in R are positive (this is really without loss of generality since as pre-processing one
can always translate values by a constant and this will just change the game’s value to the row player by
that constant). We saw we could write this as an LP:

- Variables: v, p1, p2, . . . , pn.

- Maximize v,

- Subject to:

pi ≥ 0 for all rows i,∑
i pi = 1,∑
i piRij ≥ v, for all columns j.

To put this into the form of (4), we can replace
∑

i pi = 1 with
∑

i pi ≤ 1 since we said that all entries in R
are positive, so the maximum will occur with

∑
i pi = 1, and we can also safely add in the constraint v ≥ 0.

We can also rewrite the third set of constraints as v −∑
i piRij ≤ 0. This then gives us an LP in the form

of (4) with

x =

v
p1
p2
. . .
pn

, c =

1
0
0
. . .
0

,b =

0
0
. . .
0
1

, and A =

1
1 −RT

. . .
1
0 1 . . . 1

.

I.e., maximizing cTx subject to Ax ≤ b and x ≥ 0.

We can now write the dual, following (5). Let yT = (y1, y2, . . . , ym+1). We now are asking to minimize yTb
subject to yTA ≥ cT and y ≥ 0. In other words, we want to:

- Minimize ym+1,

- Subject to:

y1 + . . .+ ym ≥ 1,

−y1Ri1 − y2Ri2 − . . .− ymRim + ym+1 ≥ 0 for all rows i,

or equivalently,

y1Ri1 + y2Ri2 + . . .+ ymRim ≤ ym+1 for all rows i.

So, we can interpret ym+1 as the value to the row player, and y1, . . . , ym as the randomized strategy of the
column player, and we want to find a randomized strategy for the column player that minimizes ym+1 subject
to the constraint that the row player gets at most ym+1 no matter what row he plays. Now notice that we’ve
only required y1 + . . . + ym ≥ 1, but since we’re minimizing and the Rij ’s are positive, the minimum will
happen at equality.

Notice that the fact that the maximum value of v in the primal is equal to the minimum value of ym+1 in
the dual follows from strong duality. Therefore, the minimax theorem is a corollary to the strong duality
theorem.
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