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Hashing

• Universal hashing

• Perfect hashing



Maintaining a Dictionary

• Let U be a universe of “keys” 
• U could be all strings of ASCII characters of length at most 80

• Let S be a subset of U, which is a small “dictionary”
• S could be all English words

• Support operations to maintain the dictionary
• Insert(x): add the key x to S
• Query(x): is the key x in S?
• Delete(x): remove the key x from S



Dictionary Models 

• Static: don’t support insert and delete operations, just optimize for fast 
query operations

• For example, the English dictionary does not change much
• Could use a sorted array with binary search

• Insertion-only: just support insert and query operations

• Dynamic: support insert, delete, and query operations 
• Could use a balanced search tree (AVL trees) to get O(log |S|) time per operation

• Hashing is an alternative approach, often the fastest and most convenient



Formal Hashing Setup
• Universe U is very large

• E.g., set of ASCII strings of length 80 is 

• Care about a small subset . Let N = |S|. 
• S could be the names of all students in this class

• Our data structure is an array A of size M and a “hash function” h: U , 1, …, M-1}.
• Typically , so can’t just store each key x in A[x]
• Insert(x) will try to place key x in A[h(x)]

• But what if h(x) = h(y) for We let each entry of A be a linked list.
• To insert an element x into A[h(x)], insert it at the top of the list
• Hope linked lists are small



How to Choose the Hash Function h?

• Want it to be unlikely that h(x) = h(y) for different keys x and y
• Want our array size M to be O(N), where N is number of keys

• Want to quickly compute h(x) given x
• We will treat this computation as O(1) time

• How long do Query(x) and Delete(x) take?
• O(length of list A[h(x)]) time

• How long does Insert(x) take?
• O(1) time no matter what 
• You may first want to check for a duplicate though – that is O(length of list A[h(x)]) time

• How long can the lists A[h(x)] be?



Bad Sets Exist for any Hash Function

• Claim: For any hash function h: U -> {0, 1, 2, …, M-1}, if , 
there is a set S of N elements of U that all hash to the same location

• Proof: If every location had at most N-1 elements of U hashing to it, we would 
have 

• There’s no good hash function h that works for every S. Thoughts?

• Universal Hashing: Randomly choose h!
• Show for any sequence of insert, query, and delete operations, the expected number of 

operations, over a random h, is small



Universal Hashing

• Definition: A set H of hash functions h, where each h in H maps                    
U -> {0, 1, 2, …, M-1} is universal if for all , 

←

• The condition holds for every x y, and the randomness is only over the 
choice of h from H

• Equivalently, for every , we have: ∈  |



Universal Hashing Examples



Examples that are Not Universal

• Note that a and b collide with probability more than 1/M = 1/2

2



Universal Hashing Example

• The following hash function is universal with M = |{0,1,2}|



Using Universal Hashing

• Theorem: If H is universal, then for any set with |S| = N, for any 
, if we choose h at random from H, the expected number of collisions 

between x and other elements in S is less than N/M. 

• Proof: For with , let if h(x) = h(y), otherwise 

Let be the total number of collisions with x

By linearity of expectation, 



Using Universal Hashing

• Corollary: If H is universal, for any sequence of L insert, query, and delete 
operations in which there are at most M keys in the data structure at any 
time, the expected cost of the L operations for a random is O(L) 

• Assumes the time to compute h is O(1)

• Proof: For any operation in the sequence, its expected cost is O(1) by the 
last theorem, so the expected total cost is O(L) by linearity of expectation 



But how to Construct a Universal Hash Family?

• Claim: for , 

• Suppose and M 
• Let A be a random m x u binary matrix, and h(x) = Ax mod 2



But how to Construct a Universal Hash Family?

• Claim: For , 

• Proof: mod 2, where is the i-th column of A
If h(x) = h(y), then Ax=Ay mod 2, so A(x-y) = 0 mod 2
If , there exists an ∗ for which ∗ ∗

Fix for all ∗, which fixes b = ∗ mod 2
A(x-y) = 0 mod 2 if and only if ∗= b

∗
∗

So h(x) = Ax mod 2 is universal



More Universal Hashing

• Given a key x, suppose x = where each 

• Suppose M is prime 

• Choose random and define

• Claim: the family of such hash functions is universal, in fact,       
for all distinct x and y



More Universal Hashing

• Claim: the family of such hash functions is universal, that is,            
for all x y

• Proof: Since , there is an ∗ for which ∗ ∗

Let ∗ , and h(x) = h’(x) + ∗ ∗ mod M

If h(x) = h(y), then h’(x) + ∗ ∗= h’(y) + ∗ ∗ mod M

So ∗ ∗ ∗ mod M, or ∗
∗ ∗

mod M

This happens with probability exactly 1/M



k-wise Independent Families

• Definition: A hash function family H is k-universal if for every set of k distinct 
keys and every set of values , 

Pr[ = 

• If H is 2-universal, then it is universal. Why?

• h(x) = Ax mod 2 for a random binary A is not 2-universal. Why?

• Exercise: Show Ax + b mod 2 is 2-universal, where A in   and 
are chosen independently and uniformly at random 



Perfect Hashing

• If we fix the dictionary S of size N, can we find a hash function h so that all query(x) 
operations take worst-case constant time?

• Claim: If H is universal and , then 
←

• Proof: How many pairs {x,y} of distinct x,y in S are there?
Answer: N(N-1)/2
For each pair, the probability of a collision is at most 1/M

Pr[exists a collision] (N(N-1)/2)/M 

Just try a random h and check if there are any collisions
Problem: our hash table has space! How can we get O(N) space?



Perfect Hashing in O(N) Space – 2 Level Scheme
• Choose a hash function from a universal family

• Let be the number of items x in S for which h(x) = i

• Choose N “second-level” hash functions where 

By previous analysis, can 
choose hash functions   

so that there are 
no collisions, so O(1) time

Hash table size is ,…,

How big is that??



Perfect Hashing in O(N) Space – 2 Level Scheme
• Theorem: If we pick h from a universal family H, then

←
,…,

• Proof: It suffices to show and apply Markov’s inequality

Let , if h(x) = h(y). By counting collisions on both sides, ,,

If x = y, then , . If , then , ,

, ,, < 2N

So choose a random h in H, check if ,…, , and if so, then choose 


