# Lecture 5: Hashing 

David Woodruff

## Hashing

- Universal hashing
- Perfect hashing


## Maintaining a Dictionary

- Let U be a universe of "keys"
- U could be all strings of ASCII characters of length at most 80
- Let $S$ be a subset of $U$, which is a small "dictionary"
- S could be all English words
- Support operations to maintain the dictionary
- Insert(x): add the key $x$ to $S$
- Query(x): is the key $x$ in S?
- Delete(x): remove the key $x$ from $S$


## Dictionary Models

- Static: don't support insert and delete operations, just optimize for fast query operations
- For example, the English dictionary does not change much
- Could use a sorted array with binary search
- Insertion-only: just support insert and query operations
- Dynamic: support insert, delete, and query operations
- Could use a balanced search tree (AVL trees) to get O(log |S|) time per operation
- Hashing is an alternative approach, often the fastest and most convenient


## Formal Hashing Setup

- Universe $U$ is very large
- E.g., set of ASCII strings of length 80 is $128^{80}$
- Care about a small subset $S \subset U$. Let $N=|S|$.
- $S$ could be the names of all students in this class
- Our data structure is an array $A$ of size $M$ and a "hash function" $h: U \rightarrow\{0,1, \ldots, M-1\}$.
- Typically M <<U, so can't just store each key x in A[x]
- Insert( x ) will try to place key x in $\mathrm{A}[\mathrm{h}(\mathrm{x})$ ]
- But what if $h(x)=h(y)$ for $x \neq y$ ? We let each entry of $A$ be a linked list.
- To insert an element $x$ into $A[h(x)]$, insert it at the top of the list
- Hope linked lists are small


## How to Choose the Hash Function h?

- Want it to be unlikely that $\mathrm{h}(\mathrm{x})=\mathrm{h}(\mathrm{y})$ for different keys x and y
- Want our array size M to be $\mathrm{O}(\mathrm{N})$, where N is number of keys
- Want to quickly compute $h(x)$ given $x$
- We will treat this computation as $O(1)$ time
- How long do Query $(\mathrm{x})$ and Delete $(\mathrm{x})$ take?
- O(length of list $A[h(x)])$ time
- How long does Insert(x) take?
- O(1) time no matter what
- You may first want to check for a duplicate though - that is O(length of list $A[h(x)])$ time
- How long can the lists $A[h(x)]$ be?


## Bad Sets Exist for any Hash Function

- Claim: For any hash function $\mathrm{h}: \mathrm{U}$-> $\{0,1,2, \ldots, \mathrm{M}-1\}$, if $|\mathrm{U}| \geq(\mathrm{N}-1) \mathrm{M}+1$, there is a set $S$ of $N$ elements of $U$ that all hash to the same location
- Proof: If every location had at most N -1 elements of U hashing to it, we would have $|\mathrm{U}| \leq(\mathrm{N}-1) \mathrm{M}$
- There's no good hash function $h$ that works for every S. Thoughts?
- Universal Hashing: Randomly choose h!
- Show for any sequence of insert, query, and delete operations, the expected number of operations, over a random $h$, is small


## Universal Hashing

- Definition: A set $H$ of hash functions $h$, where each $h$ in $H$ maps $U->\{0,1,2, \ldots, M-1\}$ is universal if for all $x \neq y$,

$$
\operatorname{Pr}_{\mathrm{h} \leftarrow \mathrm{H}}[\mathrm{~h}(\mathrm{x})=\mathrm{h}(\mathrm{y})] \leq \frac{1}{\mathrm{M}}
$$

- The condition holds for every $x \neq y$, and the randomness is only over the choice of h from H
- Equivalently, for every $x \neq y$, we have: $\frac{|h \in H| h(x)=h(y) \mid}{|H|} \leq \frac{1}{\mathrm{M}}$


## Universal Hashing Examples

Example 1: The following three hash families with hash functions mapping the set $\{a, b\}$ to $\{0,1\}$ are universal, because at most $1 / M$ of the hash functions in them cause $a$ and $b$ to collide, were $M=|\{0,1\}|$.

|  | $a$ | $b$ |
| :--- | :--- | :--- |
| $h_{1}$ | 0 | 0 |
| $h_{2}$ | 0 | 1 |


|  | $a$ | $b$ |
| :--- | :--- | :--- |
| $h_{1}$ | 0 | 1 |
| $h_{2}$ | 1 | 0 |


|  | $a$ | $b$ |
| :--- | :--- | :--- |
| $h_{1}$ | 0 | 0 |
| $h_{2}$ | 1 | 0 |
| $h_{3}$ | 0 | 1 |

## Examples that are Not Universal



|  | $a$ | $b$ | $c$ |
| :---: | :---: | :---: | :---: |
| $h_{1}$ | 0 | 0 | 1 |
| $h_{2}$ | 1 | 1 | 0 |
| $h_{3}$ | 1 | 0 | 1 |

- Note that $a$ and $b$ collide with probability more than $1 / M=1 / 2$


## Universal Hashing Example

- The following hash function is universal with $M=|\{0,1,2\}|$

|  | $a$ | $b$ | $c$ |  |
| :--- | :--- | :--- | :--- | :--- |
| $h_{0}$ | 0 | 0 | 0 | $\leftarrow$ Note! |
| $h_{1}$ | 0 | 1 | 2 |  |
| $h_{2}$ | 1 | 2 | 0 |  |
| $h_{3}$ | 2 | 0 | 1 |  |

## Using Universal Hashing

- Theorem: If $H$ is universal, then for any set $S \subseteq U$ with $|S|=N$, for any $x \in$ $S$, if we choose $h$ at random from $H$, the expected number of collisions between $x$ and other elements in $S$ is less than $N / M$.
- Proof: For $y \in S$ with $y \neq x$, let $C_{x y}=1$ if $h(x)=h(y)$, otherwise $C_{x y}=0$

Let $\mathrm{C}_{\mathrm{x}}=\sum_{\mathrm{y} \neq \mathrm{x}} \mathrm{C}_{\mathrm{xy}}$ be the total number of collisions with x
$\mathrm{E}\left[\mathrm{C}_{\mathrm{xy}}\right]=\operatorname{Pr}[\mathrm{h}(\mathrm{x})=\mathrm{h}(\mathrm{y})] \leq \frac{1}{\mathrm{M}}$
By linearity of expectation, $E\left[C_{x}\right]=\sum_{y \neq x} E\left[C_{x y}\right] \leq \frac{N-1}{M}$

## Using Universal Hashing

- Corollary: If H is universal, for any sequence of L insert, query, and delete operations in which there are at most M keys in the data structure at any time, the expected cost of the $L$ operations for a random $h \in H$ is $O(L)$
- Assumes the time to compute $h$ is $\mathrm{O}(1)$
- Proof: For any operation in the sequence, its expected cost is $\mathrm{O}(1)$ by the last theorem, so the expected total cost is $\mathrm{O}(\mathrm{L})$ by linearity of expectation


## But how to Construct a Universal Hash Family?

- Suppose $|\mathrm{U}|=2^{\mathrm{u}}$ and $\mathrm{M}=2^{\mathrm{m}}$
- Let $A$ be a random $m x u$ binary matrix, and $h(x)=A x \bmod 2$

- Claim: for $\mathrm{x} \neq \mathrm{y}, \underset{\mathrm{h}}{\operatorname{Pr}}[\mathrm{h}(\mathrm{x})=\mathrm{h}(\mathrm{y})]=\frac{1}{\mathrm{M}}=\frac{1}{2^{\mathrm{m}}}$


## But how to Construct a Universal Hash Family?

- Claim: For $\mathrm{x} \neq \mathrm{y}, \underset{\mathrm{h}}{\operatorname{Pr}}[\mathrm{h}(\mathrm{x})=\mathrm{h}(\mathrm{y})]=\frac{1}{\mathrm{M}}=\frac{1}{2^{\mathrm{m}}}$
- Proof: $\mathrm{A} \cdot \mathrm{x} \bmod 2=\sum_{\mathrm{i}} \mathrm{A}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}} \bmod 2$, where $\mathrm{A}_{\mathrm{i}}$ is the i -th column of A If $h(x)=h(y)$, then $A x=A y \bmod 2$, so $A(x-y)=0 \bmod 2$ If $x \neq y$, there exists an $i^{*}$ for which $x_{i^{*}} \neq y_{i^{*}}$
Fix $A_{j}$ for all $j \neq \mathrm{i}^{*}$, which fixes $b=\sum_{j \neq \mathrm{i}^{*}} A_{j}\left(\mathrm{x}_{\mathrm{j}}-\mathrm{y}_{\mathrm{j}}\right) \bmod 2$
$A(x-y)=0 \bmod 2$ if and only if $A_{i^{*}}=b$

$$
\operatorname{Pr}_{\mathrm{A}_{\mathrm{i}^{*}}}\left[\mathrm{~A}_{\mathrm{i}^{*}}=\mathrm{b}\right]=\frac{1}{2^{\mathrm{m}}}=\frac{1}{\mathrm{M}}
$$

So $h(x)=A x \bmod 2$ is universal

## More Universal Hashing

- Given a key $x$, suppose $x=\left[x_{1}, \ldots, x_{k}\right]$ where each $x_{i} \in\{0,1, \ldots, M-1\}$
- Suppose M is prime
- Choose random $\mathrm{r}_{1}, . ., \mathrm{r}_{\mathrm{k}} \in\{0,1, \ldots, \mathrm{M}-1\}$ and define

$$
h(x)=r_{1} x_{1}+r_{2} x_{2}+\ldots+r_{k} x_{k} \bmod M
$$

- Claim: the family of such hash functions is universal, in fact, $\underset{\mathrm{h}}{\operatorname{Pr}}[\mathrm{h}(\mathrm{x})=\mathrm{h}(\mathrm{y})]=\frac{1}{\mathrm{M}}$ for all distinct x and y


## More Universal Hashing

- Claim: the family of such hash functions is universal, that is, $\underset{\mathrm{h}}{\operatorname{Pr}}[\mathrm{h}(\mathrm{x})=\mathrm{h}(\mathrm{y})]=\frac{1}{\mathrm{M}}$ for all $\mathrm{x} \neq \mathrm{y}$
- Proof: Since $\mathrm{x} \neq \mathrm{y}$, there is an $\mathrm{i}^{*}$ for which $\mathrm{x}_{\mathrm{i}^{*}} \neq \mathrm{y}_{\mathrm{i}^{*}}$

Let $h^{\prime}(x)=\sum_{j \neq i^{*}} r_{j} x_{j}$, and $h(x)=h^{\prime}(x)+r_{i^{*} x_{i}} \bmod M$
If $h(x)=h(y)$, then $h^{\prime}(x)+r_{i^{*}} x_{i^{*}}=h^{\prime}(y)+r_{i^{*}} y_{i^{*}} \bmod M$
So $r_{i^{*}}\left(x_{i^{*}}-y_{i^{*}}\right)=h^{\prime}(y)-h^{\prime}(x) \bmod M$, or $r_{i^{*}}=\frac{h^{\prime}(y)-h^{\prime}(x)}{x_{i^{*}-y_{i^{*}}}} \bmod M$
This happens with probability exactly $1 / \mathrm{M}$

## k-wise Independent Families

- Definition: A hash function family H is k -universal if for every set of k distinct keys $x_{1}, \ldots, x_{k}$ and every set of $k$ values $v_{1}, \ldots, v_{k} \in\{0,1, \ldots, M-1\}$,

$$
\operatorname{Pr}\left[h\left(\mathrm{x}_{1}\right)=\mathrm{v}_{1} \operatorname{AND} \mathrm{~h}\left(\mathrm{x}_{2}\right)=\mathrm{v}_{2} \text { AND } \ldots \text { AND } \mathrm{h}\left(\mathrm{x}_{\mathrm{k}}\right)=\mathrm{v}_{\mathrm{k}}\right]=\frac{1}{\mathrm{~m}^{\mathrm{k}}}
$$

- If H is 2-universal, then it is universal. Why?
- $h(x)=A x \bmod 2$ for a random binary $A$ is not 2-universal. Why?
- Exercise: Show $A x+b \bmod 2$ is 2 -universal, where $A$ in $\{0,1\}^{m \times u}$ and $b \in$ $\{0,1\}^{\mathrm{m}}$ are chosen independently and uniformly at random


## Perfect Hashing

- If we fix the dictionary $S$ of size $N$, can we find a hash function $h$ so that all query $(x)$ operations take worst-case constant time?
- Claim: If $H$ is universal and $M=N^{2}$, then $\underset{h \leftarrow H}{\operatorname{Pr}}[$ no collisions in $S] \geq \frac{1}{2}$
- Proof: How many pairs $\{x, y\}$ of distinct $x, y$ in $S$ are there?

Answer: N(N-1)/2
For each pair, the probability of a collision is at most $1 / \mathrm{M}$
$\operatorname{Pr}[$ exists a collision $] \leq(N(N-1) / 2) / M \leq \frac{1}{2}$

Just try a random $h$ and check if there are any collisions
Problem: our hash table has $\mathrm{M}=\mathrm{N}^{2}$ space! How can we get $\mathrm{O}(\mathrm{N})$ space?

## Perfect Hashing in $\mathrm{O}(\mathrm{N})$ Space -2 Level Scheme

- Choose a hash function $\mathrm{h}: \mathrm{U} \rightarrow\{1,2, \ldots, \mathrm{~N}\}$ from a universal family
- Let $\mathrm{L}_{\mathrm{i}}$ be the number of items x in S for which $\mathrm{h}(\mathrm{x})=\mathrm{i}$
- Choose N "second-level" hash functions $\mathrm{h}_{1}, \mathrm{~h}_{2}, \ldots, \mathrm{~h}_{\mathrm{N}}$, where $\mathrm{h}_{\mathrm{i}}: \mathrm{U} \rightarrow\left\{1, \ldots, \mathrm{~L}_{\mathrm{i}}^{2}\right\}$


By previous analysis, can choose hash functions $h_{1}, h_{2}, \ldots, h_{N}$ so that there are no collisions, so O(1) time

Hash table size is $\sum_{\mathrm{i}=1, \ldots, \mathrm{n}} \mathrm{L}_{\mathrm{i}}^{2}$ How big is that??

## Perfect Hashing in O(N) Space - 2 Level Scheme

- Theorem: If we pick $h$ from a universal family $H$, then

$$
\operatorname{Pr}_{\mathrm{h} \leftarrow \mathrm{H}}\left[\sum_{\mathrm{i}=1, \ldots, \mathrm{~N}} \mathrm{~L}_{\mathrm{i}}^{2}>4 \mathrm{~N}\right] \leq \frac{1}{2}
$$

- Proof: It suffices to show $\mathrm{E}\left[\sum_{\mathrm{i}} \mathrm{L}_{\mathrm{i}}^{2}\right]<2 \mathrm{~N}$ and apply Markov's inequality

$$
\begin{aligned}
& \text { Let } C_{x, y}=1 \text { if } h(x)=h(y) \text {. By counting collisions on both sides, } \sum_{i} L_{i}^{2}=\sum_{x, y} C_{x, y} \\
& \text { If } x=y \text {, then } C_{x, y}=1 \text {. If } x \neq y \text {, then } E\left[C_{x, y}\right]=\operatorname{Pr}\left[C_{x, y}=1\right] \leq \frac{1}{N} \\
& E\left[\sum_{i} L_{i}^{2}\right]=\sum_{x, y} E\left[C_{x, y}\right]=N+\sum_{x \neq y} E\left[C_{x, y}\right] \leq N+N(N-1) / N<2 N
\end{aligned}
$$

So choose a random $h$ in $H$, check if $\sum_{i=1, \ldots, n} L_{i}^{2} \leq 4 N$, and if so, then choose $h_{1}, \ldots, h_{N}$

