Topic 2: Concrete Models and Tight Upper and Lower Bounds

David Woodruff

Theme: Tight Upper and Lower Bounds

- Number of comparisons to sort an array
- Number of exchanges to sort an array
- Number of comparisons needed to find the largest and second-largest elements in an array
- Number of probes into a graph needed to determine if the graph is connected

Formal Model

- Look at models which specify exactly which operations may be performed on the input, and what they cost
- E.g., performing a comparison, or swapping a pair of elements
- An upper bound of $f(n)$ means the algorithm takes at most $f(n)$ steps on any input of size n
- A lower bound of $\mathrm{g}(\mathrm{n})$ means for any algorithm there exists an input for which the algorithm takes at least $\mathrm{g}(\mathrm{n})$ steps on that input

Sorting in the Comparison Model

- In the comparison model, we have n items in some initial order An algorithm may compare two items (asking is $\mathrm{a}_{\mathrm{i}}>\mathrm{a}_{\mathrm{j}}$?) at a cost of 1
- Moving the items is free
- No other operations allowed, such as XORing, hashing, etc.
- Sorting: given an array $a=\left[a_{1}, \ldots, a_{n}\right]$, output a permutation π so that $\left[\mathrm{a}_{\boldsymbol{\pi}(1)}, \ldots, \mathrm{a}_{\boldsymbol{\pi}(\mathrm{n})}\right]$ in which the elements are in increasing order

Sorting Lower Bound

- Theorem: Any deterministic comparison-based sorting algorithm must perform at least $\lg _{2}(\mathrm{n}!)$ comparisons to sort n elements in the worst case
- I.e., for any sorting algorithm A and $n \geq 2$, there is an input I of size n so that A makes $\geq \lg (\mathrm{n}!)=\Omega(\mathrm{n} \log \mathrm{n})$ comparisons to sort I .
- Need to rule out any possible algorithm
- Proof is information-theoretic

Sorting Lower Bound

- Proof: Suppose there is a problem with M possible outputs
- For sorting $M=n$! since for each possible output permutation π, there is an input for which the output is π
- Suppose for each possible output, there is an input for which that output is the only correct answer
- For sorting there are inputs for which π is the only correct answer
- Then there is a lower bound of $\lg _{2} \mathrm{M}$
- Consider a set of inputs in 1-to-1 correspondence with the M possible outputs
- Algorithm needs to find out which of the M inputs we have
- There's a path removing at most half of the possible inputs at each node

Sorting Lower Bound

- Information-theoretic: need $\lg (\mathrm{n}!)$ bits of information about the input before we can correctly decide on the output
- $\lg (\mathrm{n}!)=\lg (\mathrm{n})+\lg (\mathrm{n}-1)+\lg (\mathrm{n}-2)+\ldots+\lg (1)<\mathrm{n} \lg n$
- $\lg (n!)=\lg (n)+\lg (n-1)+\lg (n-2)+\ldots+\lg (1)>\left(\frac{n}{2}\right) \lg \left(\frac{n}{2}\right)=\Omega(n \lg n)$
- $n!\in\left[\left(\frac{\mathrm{n}}{\mathrm{e}}\right)^{\mathrm{n}}, \mathrm{n}^{\mathrm{n}}\right], \quad$ so $\mathrm{nlg} \mathrm{n}-\mathrm{n} \lg \mathrm{e}<\lg (\mathrm{n}!)<\mathrm{nlg} \mathrm{n}$

$$
n \lg n-1.443 n<\lg (n!)<n \lg n
$$

- $\lg (\mathrm{n}!)=(\mathrm{n} \lg \mathrm{n})(1-\mathrm{o}(1))$

Sorting Upper Bounds

- Suppose for simplicity n is a power of 2
- Binary insertion sort: using binary search to insert each new element, the number of comparisons is $\sum_{\mathrm{k}=2, \ldots, \mathrm{n}}\lceil\lg \mathrm{k}] \leq \mathrm{n} \lg \mathrm{n}$
- Note: may need to move items around a lot, but only counting comparisons
- Mergesort: merging two sorted lists of $n / 2$ elements requires at most $n-1$ comparisons
- Unrolling the recurrence, total number of comparisons is

$$
(n-1)+2\left(\frac{n}{2}-1\right)+4\left(\frac{n}{4}-1\right)+\cdots+\frac{n}{2}(2-1)=n \lg n-(n-1)<n \lg n
$$

Selection in the Comparison Model

- How many comparisons are necessary and sufficient to find the maximum of n elements in the comparison model?
- Claim: n-1 comparisons are sufficient
- Proof: scan from left to right, keep track of the largest element so far
- For lower bounds, what does our earlier information-theoretic argument give?
- Only $\Omega(\log \mathrm{n})$, which is too weak
- Also, we have to look at all elements, otherwise we may have not looked at the largest, but that can be done with $n / 2$ comparisons, also not tight

Lower Bound for Finding the Maximum

- Claim: n-1 comparisons are needed in the worst-case to find the maximum of n elements
- Proof: suppose A is an algorithm which finds the maximum of n distinct elements using fewer than n-1 comparisons
- Construct a graph G in which we join two elements by an edge if they are compared by A
- G has at least 2 connected components C_{1} and C_{2}
- Suppose A outputs element u as the maximum, and $u \in C_{1}$
- Add a large positive number to each element in C_{2}
- Does not change any of the comparisons made by A , so will still output u
- But now u is not the maximum, so A is incorrect

Lower Bound for Finding the Maximum

- Recap: upper and lower bounds match at n-1
- Argument different from information-theoretic bound for sorting
- Instead,
- if algorithm makes too few comparisons on some input In and outputs Out,
- find another input In^{\prime} where the algorithm makes the same comparisons and also outputs Out,
- but Out is not a correct output for In'

An Adversary Argument

- If algorithm makes "too few" comparisons, fool it into giving an incorrect answer
- Any deterministic algorithm sorting 3 elements requires at least 3 comparisons
- If < 2 comparisons, some element not looked at and the algorithm is incorrect
- After first comparison, 3 elements are w, l, and z, the winner and loser of the first comparison, as well as the uninvolved item
- If the second query is between w and z, say
- w is larger
- If the second query is between I and z, say
- I is smaller
- Algorithm needs one more comparison for correctness
- Goal: answer comparisons so that (a) answers consistent with some input In, (b) answers make the algorithm perform "many" comparisons

First and Second Largest of n Elements

- How many comparisons are necessary (lower bound) and sufficient (upper bound) to find the first and second largest of n distinct elements?
- Claim: $\mathrm{n}-1$ comparisons are needed in the worst-case
- Proof: need to at least find the maximum

What about Upper Bounds?

- Claim: $2 n-3$ comparisons are sufficient to find the first and secondlargest of n elements
- Proof: find the largest using $n-1$ comparisons, then find the largest of the remainder using $n-2$ comparisons, so $2 n-3$ total
- Upper bound is $2 \mathrm{n}-3$, and lower bound $\mathrm{n}-1$, both are $\Theta(\mathrm{n})$ but can we get tight bounds?

Second Largest of n Elements Upper Bound

- Claim: $\mathrm{n}+\lg \mathrm{n}-2$ comparisons are sufficient to find the first and second-largest of n elements
- Proof: find the maximum element using $\mathrm{n}-1$ comparisons by grouping elements into pairs, finding the maximum in each pair, and recursing

- What can we say about the second maximum?
- Must have been directly compared to the maximum and lost, so $\lg (\mathrm{n})-1$ additional comparisons suffice. Kislitsyn (1964) shows this is optimal

Sorting in the Exchange Model

- Consider a shelf containing n unordered books to be arranged alphabetically. How many swaps do we need to order them?
- In the exchange model, you have n items and the only operation allowed on the items is to swap a pair of them at a cost of 1 step
- All other work is free, e.g., the items can be examined and compared
- How many exchanges are necessary and sufficient?

Sorting in the Exchange Model

- Claim: $\mathrm{n}-1$ exchanges is sufficient
- Proof: here's an algorithm:
- In first step, swap the smallest item with the item in the first location
- In second step, swap the second smallest item with the item in the second location
- In k-th step, swap the k-th smallest item with the item in the k-th location
- If no swap is necessary, just skip a given step
- No swap ever undoes our previous work
- At the end, the last item must already be in the correct location

Lower Bound for Sorting in Exchange Model

- Claim: n-1 exchanges are necessary in the worst case
- Proof: create a directed graph in which the edge (i, j) means the book in location i must end up in location j

- Graph is a set of cycles
- Indegree and Outdegree of each node is 1

Lower Bound for Sorting in Exchange Model

- What is the effect of exchanging any two elements in the same cycle?
- Suppose we have edges ($\mathrm{i}_{1}, \mathrm{j}_{1}$) and ($\mathrm{i}_{2}, \mathrm{j}_{2}$) and swap elements in locations i_{1} and i_{2}
- This replaces these edges with $\left(i_{2}, j_{1}\right)$ and $\left(i_{1}, j_{2}\right)$ since now the item in position i_{2} need to go to j_{1} and item in position i_{1} need to go to j_{2}
- Since i_{1} and i_{2} in the same cycle, now we get two disjoint cycles

Lower Bound for Sorting in Exchange Model

- What is the effect of exchanging any two elements in different cycles?
- If we swap elements i_{1} and i_{2} in different cycles, similar argument shows this merges two cycles into one cycle

Lower Bound for Sorting in Exchange Model

- What is the effect of exchanging any two elements in the same cycle?
- Get two disjoint cycles
- What is the effect of exchanging any two elements in different cycles?
- Merges two cycles into one cycle
- Corner cases also result in self loop and create two disjoint cycles
- How many cycles are in the final sorted array?
- n cycles
- Suppose we begin with an array [n, 1, 2, ..., $n-1]$ with one big cycle
- Each step increases the number of cycles by at most 1 , so need $n-1$ steps

Optional content

Will not appear on the homework or exams

Query Models and Evasiveness

- Let G be the adjacency matrix of an n-node graph
- $\mathrm{G}[i, j]=1$ if there is an edge between i and j , else $\mathrm{G}[i, j]=0$
- In 1 step, we can query any element of G. All other computation is free
- How many queries do we need to tell if G is connected?
- Claim: $\mathrm{n}(\mathrm{n}-1) / 2$ queries suffice
- Proof: Just query every pair $\{i, j\}$ to learn \mathbf{G}, then check if \mathbf{G} is connected
-What about lower bounds?

Connectivity is an Evasive Graph Property

- Theorem: $\mathrm{n}(\mathrm{n}-1) / 2$ queries are necessary to determine connectivity
- Proof: adversary strategy: given a query G[u,v], answer 0 unless the graph consistent with all of your responses so far, which also satisfies $\mathrm{G}\left[\mathrm{u}^{\prime}, \mathrm{v}^{\prime}\right]=1$ for each unasked pair $\left\{u^{\prime}, v^{\prime}\right\}$, is disconnected
- Invariant: for any unasked pair \{u,v\}, the graph revealed so far has no path from u to v
- Reason: consider the last edge $\left\{u^{\prime}, v^{\prime}\right\}$ revealed on that path. Could have answered 0 and kept same connectivity by having edge $\{u, v\}$ be present

Connectivity is an Evasive Graph Property

- Theorem: $\mathrm{n}(\mathrm{n}-1) / 2$ queries are necessary to determine connectivity
- Proof: adversary strategy: given a query $\mathrm{G}[\mathrm{u}, \mathrm{v}]$, answer 0 unless the graph consistent with all of your responses so far, which also satisfies $\mathrm{G}\left[\mathrm{u}^{\prime}, \mathrm{v}^{\prime}\right]=1$ for each unasked pair $\left\{\mathrm{u}^{\prime}, \mathrm{v}^{\prime}\right\}$, is disconnected
- Invariant: for any unasked pair $\{u, v\}$, the graph revealed so far has no path from u to v
- Suppose there is some unasked pair $\{u, v\}$ by the algorithm
- If algorithm says "connected", we place all Os on unasked pairs
- If algorithm says "disconnected", we place all 1s on unasked pairs
- So algorithm needs to query every pair

