
Lecture 1: Introduction and
Median Finding

David Woodruff

Staff

Daniel Anderson David Woodruff

Instructors:

TAs:

Davis
Wojnovich

Aditya
Sundaram

Emma
Hu

Nicholas
Grill

Kunal
Joshi

Magdalen
Dobson

Bill
Qin

Efe
Cekirge

Joel
Manning

Jonathan
Liu

Suhas
Kotha

Yoseph
Mak

Andrew
Caosun

Grading and Course Policies

• All available here: https://www.cs.cmu.edu/~15451-f22

• Solve written homeworks individually. Come to office hours or ask
questions on Piazza! LaTeX solutions and submit on Gradescope

• Oral homeworks can be solved in groups of up to 3

• Recitation attendance contributes up to 3%. You may miss a small number
of recitations and still get full points, but try to come to as many as possible

6 Written Homeworks 30% (5% each)

3 Oral Homeworks 12% (4% each)

Recitation Attendance 3% (see below)

Midterm exams (two in-class times) 30% (15% each)

Final exam 25%

Homework

• Each HW has 3 problems

• About half the homeworks have a programming problem – submit via Autolab
(languages accepted are Java, C, C++, Ocaml, Python, SML)

• For oral HWs you can collaborate, but write the programming problem yourself.
Each team has 45 minutes to present the 3 problems. Feel free to use notes!

• Cite any reference material or webpage if you use it

• Late homeworks and “grace/mercy” days – please see the website for details!

• HW1 posted today. Due Sep 7

Goals of the Course

• Design and analyze algorithms!

• Algorithms: dynamic programming, divide-and-conquer, hashing and
data structures, randomization, network flows, linear programming,
approximation algorithms

• Analysis: recurrences, probabilistic analysis, amortized analysis,
potential functions

• New Models: online algorithms, data streams

Guarantees on Algorithms

• Want provable guarantees on the running time of algorithms

• Why?

• Composability: if we know an algorithm runs in time at most T on any
input, don’t have to worry what kinds of inputs we run it on

• Scaling: how does the time grow as the input size grows?

• Designing better algorithms: what are the most time-consuming steps?

Example: Median Finding

• In the median-finding problem, we have an array of distinct numbers

a1, a2, … , an

and want the index i for which there are exactly ⌊n/2⌋ numbers larger than ai

• How can we find the median?
• Check each item to see if it is the median: Θ n2 time

• Sort items with MergeSort (deterministic) or QuickSort (randomized): Θ(n log n) time

• Can we find it faster? What about finding the k-th smallest number?

QuickSelect Algorithm to Find the k-th Smallest Number

• Assume a1, a2, … , an are all distinct for simplicity

• Choose a random element ai in the list – call this the “pivot”

• Compare each aj to ai
• Let LESS = {aj such that aj < ai}
• Let GREATER = {aj such that aj > ai}

• If k ≤ |LESS|, find the k-th smallest element in LESS

• If k = LESS + 1, output the pivot ai
• Else find the (k-|LESS|-1)-th smallest item in GREATER

• Similar to Randomized QuickSort, but only recurse on one side!

Bounding the Running Time

• Theorem: the expected number of comparisons for QuickSelect is at most 4n

• T(n,k) is the expected number of comparisons to find k-th smallest item in an array of length n
• T(n,k) is the same for any array! Can show by induction (algorithm does not depend on order)
• Let T n = max

k
T n, k

• T(n) is a non-decreasing function of n
• Can show by induction (for any k and any pivot, size of recursive subarray does not decrease)

• Let’s show T(n) < 4n by induction

• Base case: T(1) = 0 < 4

• Inductive hypothesis: T(i) < 4i for all 1 ≤ i ≤ n − 1

Bounding the Running Time

• Suppose we have an array of length n. Assume n is even for the moment

• Pivot randomly partitions the array into two pieces, LESS and GREATER, with |LESS| + |GREATER| = n-1

• |LESS| is uniform in the set {0, 1, 2, 3, …, n-1}

• Since T i is non-decreasing with i, to upper bound T(n) we can assume we recurse on larger half

• T n ≤ n − 1 +
2

n
σ
i=

n

2
,…,n−1

T i

≤ n − 1 +
2

n
σ
i=

n

2
,…,n−1

4i by inductive hypothesis

< n − 1 + 4
3n

4
since the average

2

n
σ
i=

n

2
,…,n−1

i is at most
n

2
+ n−1

2
<

3n

4

< 4n completing the induction

Similar Analysis Holds for Odd n
• Suppose we have an array of length n. Assume n is odd now

• Pivot randomly partitions the array into two pieces, LESS and GREATER, with |LESS| + |GREATER| = n-1

• The probability the larger of |LESS| and |GREATER| is (n-1)/2 is 1/n

• The probability the larger of |LESS| and |GREATER| is in {(n+1)/2, …, n-1} is 2/n

• T n ≤ n − 1 +
1

n
T

n−1

2
+

2

n
σ
i=

n+1

2
,…,n−1

T i

≤ n − 1 +
1

n
⋅
4 n−1

2
+

2

n
σ
i=

n+1

2
,…,n−1

4i by inductive hypothesis

≤ n − 1 +
1

n
⋅
4 n−1

2
+

2

n−1
σ
i=

n+1

2
,…,n−1

4i there are (n-1)/2 terms to average so

we can still upper bound by the average

≤ n − 1 + 2 −
2

n
+ 4(n − 1 +

n+1

2
)/2

< 4n completing the induction

What About Deterministic Algorithms?

• Can we get an algorithm which does not use randomness and always
performs O(n) comparisons?

• Idea: suppose we could deterministically find a pivot which partitions
the input into two pieces LESS and GREATER each of size ⌊

n

2
⌋

• How to do that?

• Find the median and then partition around that
• Um... finding the median is the original problem we want to solve….

Deterministically Finding a Pivot

• Idea: deterministically find a pivot with O(n) comparisons to partition the
input into two pieces LESS and GREATER each of size at least 3n/10-1

• DeterministicSelect:
1. Group the array into n/5 groups of size 5 and find the median of each group

2. Recursively, find the median of medians. Call this p

3. Use p as a pivot to split into subarrays LESS and GREATER

4. Recurse on the appropriate piece

• Theorem: DeterministicSelect makes O(n) comparisons to find the k-th
smallest item in an array of size n

Running Time of DeterministicSelect

• DeterministicSelect:
1. Group the array into n/5 groups of size 5 and find the median of each group

2. Recursively, find the median of medians. Call this p

3. Use p as a pivot to split into subarrays LESS and GREATER

4. Recurse on the appropriate piece

• Step 1 takes O(n) time since it takes O(1) time to find the median of 5 elements

• Step 2 takes T(n/5) time

• Step 3 takes O(n) time

Claim: |LESS| ≥ 3n/10-1 and |GREATER| ≥ 3n/10-1

Running Time of DeterministicSelect

• Claim: |LESS| ≥ 3n/10-1 and |GREATER| ≥ 3n/10-1

• Example 1: If n = 15, we have three groups of 5:

{1, 2, 3, 10, 11}, {4, 5, 6, 12, 13}, {7,8,9,14,15}

medians: 3 6 9

median of medians p: 6

• There are g = n/5 groups, and at least ⌈
g

2
⌉ of them have at least 3 elements at

most p. The number of elements less than or equal to p is at least

3
g

2
≥
3n

10
• Also at least 3n/10 elements greater than or equal to p

Running Time of DeterministicSelect

• DeterministicSelect:
1. Group the array into n/5 groups of size 5 and find the median of each group

2. Recursively, find the median of medians. Call this p

3. Use p as a pivot to split into subarrays LESS and GREATER

4. Recurse on the appropriate piece

• Steps 1-3 take O(n) + T(n/5) time

• Since |LESS| ≥ 3n/10-1 and |GREATER| ≥ 3n/10-1, Step 4 takes at most T(7n/10) time

• So T n ≤ cn + T
n

5
+ T

7n

10
, for a constant c > 0

Running Time of DeterministicSelect

• T n ≤ cn + T
n

5
+ T

7n

10

Running Time of DeterministicSelect

• T n ≤ cn + T
n

5
+ T

7n

10

T n ≤ cn + T
n

5
+ T

7n

10

≤ cn +
cn

5
+
c7n

10
+ T

n

25
+ T

7n

50
+ T

7n

50
+ T

49n

100

≤ cn +
cn

5
+
c7n

10
+
cn

25
+
c7n

50
+
c7n

50
+
c49n

100
+⋯

= cn +
9cn

10
+
81cn

100
+⋯

Running Time of DeterministicSelect

• T n ≤ cn + T
n

5
+ T

7n

10

• Time is cn 1 +
9

10
+

9

10

2
+ … ≤ 10cn

• Recurrence works because n/5 + 7n/10 < n

• For constants c and a1, a2, … ar with a1 + a2 +⋯ar < 1, the recurrence
T n ≤ T a1n + T a2n + …+ T arn + cn solves to T n = O(n)
• If instead a1 + a2 + …+ ar = 1, the recurrence solves to T(n) = O(n log n)
• If we use median of 3 in DeterministicSelect instead of median of 5, what happens?

