Lecture 1: Introduction and Median Finding

David Woodruff

Staff

Instructors:

Daniel Anderson

David Woodruff

TAs:

Aditya Sundaram	Bill Qin	Davis Wojnovich	Efe Cekirge	Joel Manning	Jonathan Liu	Yoseph Mak
Kunal Emma Magdalen Nicholas Suhas	Andrew					
Joshi	Hu	Dobson	Grill	Kotha	Caosun	

Grading and Course Policies

- All available here: https://www.cs.cmu.edu/~15451-f22

6 Written Homeworks	$\mathbf{3 0 \%}$ (5\% each)
3 Oral Homeworks	$\mathbf{1 2 \%}$ (4\% each)
Recitation Attendance	$\mathbf{3 \%}$ (see below)
Midterm exams (two in-class times)	$\mathbf{3 0 \%}$ (15\% each)
Final exam	$\mathbf{2 5 \%}$

- Solve written homeworks individually. Come to office hours or ask questions on Piazza! LaTeX solutions and submit on Gradescope
- Oral homeworks can be solved in groups of up to 3
- Recitation attendance contributes up to 3%. You may miss a small number of recitations and still get full points, but try to come to as many as possible

Homework

- Each HW has 3 problems
- About half the homeworks have a programming problem - submit via Autolab (languages accepted are Java, C, C++, Ocaml, Python, SML)
- For oral HWs you can collaborate, but write the programming problem yourself. Each team has 45 minutes to present the 3 problems. Feel free to use notes!
- Cite any reference material or webpage if you use it
- Late homeworks and "grace/mercy" days - please see the website for details!
- HW1 posted today. Due Sep 7

Goals of the Course

- Design and analyze algorithms!
- Algorithms: dynamic programming, divide-and-conquer, hashing and data structures, randomization, network flows, linear programming, approximation algorithms
- Analysis: recurrences, probabilistic analysis, amortized analysis, potential functions
- New Models: online algorithms, data streams

Guarantees on Algorithms

- Want provable guarantees on the running time of algorithms
- Why?
- Composability: if we know an algorithm runs in time at most T on any input, don't have to worry what kinds of inputs we run it on
- Scaling: how does the time grow as the input size grows?
- Designing better algorithms: what are the most time-consuming steps?

Example: Median Finding

- In the median-finding problem, we have an array of distinct numbers

$$
a_{1}, a_{2}, \ldots, a_{n}
$$

and want the index i for which there are exactly $\lfloor n / 2\rfloor$ numbers larger than a_{i}

- How can we find the median?
- Check each item to see if it is the median: $\Theta\left(n^{2}\right)$ time
- Sort items with MergeSort (deterministic) or QuickSort (randomized): $\Theta(n \log n)$ time
- Can we find it faster? What about finding the k-th smallest number?

QuickSelect Algorithm to Find the k-th Smallest Number

- Assume $a_{1}, a_{2}, \ldots, a_{n}$ are all distinct for simplicity
- Choose a random element a_{i} in the list - call this the "pivot"
- Compare each a_{j} to a_{i}
- Let LESS $=\left\{\mathrm{a}_{\mathrm{j}}\right.$ such that $\left.\mathrm{a}_{\mathrm{j}}<\mathrm{a}_{\mathrm{i}}\right\}$
- Let GREATER $=\left\{a_{j}\right.$ such that $\left.a_{j}>a_{i}\right\}$
- If $k \leq|L E S S|$, find the k-th smallest element in LESS
- If $k=\mid$ LESS $\mid+1$, output the pivot a_{i}
- Else find the (k-|LESS $\mid-1$)-th smallest item in GREATER
- Similar to Randomized QuickSort, but only recurse on one side!

Bounding the Running Time

- Theorem: the expected number of comparisons for QuickSelect is at most 4 n
- $\mathrm{T}(\mathrm{n}, \mathrm{k})$ is the expected number of comparisons to find k -th smallest item in an array of length n
- $\mathrm{T}(\mathrm{n}, \mathrm{k})$ is the same for any array! Can show by induction (algorithm does not depend on order)
- Let $T(n)=\max _{k} T(n, k)$
- $T(n)$ is a non-decreasing function of n
- Can show by induction (for any k and any pivot, size of recursive subarray does not decrease)
- Let's show $\mathrm{T}(\mathrm{n})<4 \mathrm{n}$ by induction
- Base case: $\mathrm{T}(1)=0<4$
- Inductive hypothesis: $\mathrm{T}(\mathrm{i})<4 \mathrm{i}$ for all $1 \leq \mathrm{i} \leq \mathrm{n}-1$

Bounding the Running Time

- Suppose we have an array of length n . Assume n is even for the moment
- Pivot randomly partitions the array into two pieces, LESS and GREATER, with |LESS $|+|$ GREATER $\mid=\mathrm{n}-1$
- |LESS| is uniform in the set $\{0,1,2,3, \ldots, n-1\}$
- Since T(i) is non-decreasing with i, to upper bound $T(n)$ we can assume we recurse on larger half
- $\mathrm{T}(\mathrm{n}) \leq \mathrm{n}-1+\frac{2}{\mathrm{n}} \sum_{\mathrm{i}=\frac{\mathrm{n}}{2}, \ldots, \mathrm{n}-1} \mathrm{~T}(\mathrm{i})$

$$
\begin{array}{ll}
\leq \mathrm{n}-1+\frac{2}{\mathrm{n}} \sum_{\mathrm{i}=\frac{\mathrm{n}}{2}, \ldots, \mathrm{n}-1} 4 \mathrm{i} & \text { by inductive hypothesis } \\
<\mathrm{n}-1+4\left(\frac{3 \mathrm{n}}{4}\right) & \text { since the average } \frac{2}{\mathrm{n}} \sum_{\mathrm{i}=\frac{\mathrm{n}}{2}, \ldots, \mathrm{n}-1} \mathrm{i} \text { is at most } \frac{\frac{\mathrm{n}}{2}+(\mathrm{n}-1)}{2}<\frac{3 \mathrm{n}}{4}
\end{array}
$$

$$
<4 \mathrm{n} \quad \text { completing the induction }
$$

Similar Analysis Holds for Odd n

- Suppose we have an array of length n . Assume n is odd now
- Pivot randomly partitions the array into two pieces, LESS and GREATER, with |LESS| + |GREATER| = n-1
- The probability the larger of |LESS| and |GREATER| is $(n-1) / 2$ is $1 / n$
- The probability the larger of |LESS| and |GREATER| is in $\{(n+1) / 2, \ldots, n-1\}$ is $2 / n$
- $\mathrm{T}(\mathrm{n}) \leq \mathrm{n}-1+\frac{1}{\mathrm{n}} \mathrm{T}\left(\frac{\mathrm{n}-1}{2}\right)+\frac{2}{\mathrm{n}} \sum_{\mathrm{i}=\frac{\mathrm{n}+1}{2}, \ldots, \mathrm{n}-1} \mathrm{~T}(\mathrm{i})$
$\leq \mathrm{n}-1+\frac{1}{\mathrm{n}} \cdot \frac{4(\mathrm{n}-1)}{2}+\frac{2}{\mathrm{n}} \sum_{\mathrm{i}=\frac{\mathrm{n}+1}{2}, \ldots, \mathrm{n}-1} 4 \mathrm{i} \quad$ by inductive hypothesis
$\leq \mathrm{n}-1+\frac{1}{\mathrm{n}} \cdot \frac{4(\mathrm{n}-1)}{2}+\frac{2}{\mathrm{n}-1} \sum_{\mathrm{i}=\frac{\mathrm{n}+1}{2}, \ldots, \mathrm{n}-1} 4 \mathrm{i}$
$\leq \mathrm{n}-1+2-\frac{2}{\mathrm{n}}+4\left((\mathrm{n}-1)+\frac{\mathrm{n}+1}{2}\right) / 2$
$<4 n$
completing the induction

What About Deterministic Algorithms?

- Can we get an algorithm which does not use randomness and always performs $O(n)$ comparisons?
- Idea: suppose we could deterministically find a pivot which partitions the input into two pieces LESS and GREATER each of size $\left\lfloor\frac{n}{2}\right\rfloor$
- How to do that?
- Find the median and then partition around that
- Um... finding the median is the original problem we want to solve....

Deterministically Finding a Pivot

- Idea: deterministically find a pivot with $\mathrm{O}(\mathrm{n})$ comparisons to partition the input into two pieces LESS and GREATER each of size at least 3n/10-1
- DeterministicSelect:

1. Group the array into $n / 5$ groups of size 5 and find the median of each group
2. Recursively, find the median of medians. Call this p
3. Use p as a pivot to split into subarrays LESS and GREATER
4. Recurse on the appropriate piece

- Theorem: DeterministicSelect makes $\mathrm{O}(\mathrm{n})$ comparisons to find the k -th smallest item in an array of size n

Running Time of DeterministicSelect

- DeterministicSelect:

1. Group the array into $n / 5$ groups of size 5 and find the median of each group
2. Recursively, find the median of medians. Call this p
3. Use p as a pivot to split into subarrays LESS and GREATER
4. Recurse on the appropriate piece

- Step 1 takes $\mathrm{O}(\mathrm{n})$ time since it takes $\mathrm{O}(1)$ time to find the median of 5 elements
- Step 2 takes $T(n / 5)$ time
- Step 3 takes O(n) time

Claim: \mid LESS $\mid \geq 3 n / 10-1$ and \mid GREATER $\mid \geq 3 n / 10-1$

Running Time of DeterministicSelect

- Claim: \mid LESS $\mid \geq 3 n / 10-1$ and \mid GREATER $\mid \geq 3 n / 10-1$
- Example 1: If $\mathrm{n}=15$, we have three groups of 5 :

$$
\{1,2,3,10,11\},\{4,5,6,12,13\},\{7,8,9,14,15\}
$$

medians:
3
6
9
median of medians p :
6

- There are $\mathrm{g}=\mathrm{n} / 5$ groups, and at least $\left[\frac{\mathrm{g}}{2}\right]$ of them have at least 3 elements at most p. The number of elements less than or equal to p is at least

$$
3\left\lceil\frac{\mathrm{~g}}{2}\right\rceil \geq \frac{3 \mathrm{n}}{10}
$$

- Also at least $3 n / 10$ elements greater than or equal to p

Running Time of DeterministicSelect

- DeterministicSelect:

1. Group the array into $n / 5$ groups of size 5 and find the median of each group
2. Recursively, find the median of medians. Call this p
3. Use p as a pivot to split into subarrays LESS and GREATER
4. Recurse on the appropriate piece

- Steps 1-3 take $O(n)+T(n / 5)$ time
- Since \mid LESS $\mid \geq 3 n / 10-1$ and \mid GREATER $\mid \geq 3 n / 10-1$, Step 4 takes at most $T(7 n / 10)$ time
- So $T(n) \leq \mathrm{cn}+\mathrm{T}\left(\frac{\mathrm{n}}{5}\right)+\mathrm{T}\left(\frac{7 \mathrm{n}}{10}\right)$, for a constant $\mathrm{c}>0$

Running Time of DeterministicSelect

- $T(n) \leq c n+T\left(\frac{n}{5}\right)+T\left(\frac{7 n}{10}\right)$

Running Time of DeterministicSelect

- $T(n) \leq c n+T\left(\frac{n}{5}\right)+T\left(\frac{7 n}{10}\right)$

$\mathrm{T}(\mathrm{n}) \leq \mathrm{cn}+\mathrm{T}\left(\frac{\mathrm{n}}{5}\right)+\mathrm{T}\left(\frac{7 \mathrm{n}}{10}\right)$
$\leq \mathrm{cn}+\frac{\mathrm{cn}}{5}+\frac{\mathrm{c} 7 \mathrm{n}}{10}+\mathrm{T}\left(\frac{\mathrm{n}}{25}\right)+\mathrm{T}\left(\frac{7 \mathrm{n}}{50}\right)+\mathrm{T}\left(\frac{7 \mathrm{n}}{50}\right)+\mathrm{T}\left(\frac{49 \mathrm{n}}{100}\right)$
$\leq \mathrm{cn}+\frac{\mathrm{cn}}{5}+\frac{\mathrm{c} 7 \mathrm{n}}{10}+\frac{\mathrm{cn}}{25}+\frac{\mathrm{c} 7 \mathrm{n}}{50}+\frac{\mathrm{c} 7 \mathrm{n}}{50}+\frac{\mathrm{c} 49 \mathrm{n}}{100}+\cdots$
$=\mathrm{cn}+\frac{9 \mathrm{cn}}{10}+\frac{81 \mathrm{cn}}{100}+\cdots$

Running Time of DeterministicSelect

- $T(n) \leq c n+T\left(\frac{n}{5}\right)+T\left(\frac{7 n}{10}\right)$

- Time is cn $\left(1+\left(\frac{9}{10}\right)+\left(\frac{9}{10}\right)^{2}+\ldots\right) \leq 10 \mathrm{cn}$
- Recurrence works because $n / 5+7 n / 10<n$
- For constants c and $\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots \mathrm{a}_{\mathrm{r}}$ with $\mathrm{a}_{1}+\mathrm{a}_{2}+\cdots \mathrm{a}_{\mathrm{r}}<1$, the recurrence $T(n) \leq T\left(a_{1} n\right)+T\left(a_{2} n\right)+\ldots+T\left(a_{r} n\right)+c n$ solves to $T(n)=O(n)$
- If instead $a_{1}+a_{2}+\ldots+a_{r}=1$, the recurrence solves to $T(n)=O(n \log n)$
- If we use median of 3 in DeterministicSelect instead of median of 5 , what happens?

