Lecture /:
Fingerprinting

David Woodruff

How to pick a random prime in the range {1, 2, ..., M}?

e Pick a random integer X in the range {1,..., M}.

e Check if X is a prime. If so, output it. Else go back to the first step.

How to pick a random integer X?
* Pick a uniformly random bit string of length |log, M | + 1
* If it represents a number < M, output X. Else go back to the last step
* In expectation, repeat this step at most twice

How to check if X is prime?
* Miller-Rabin primality test very efficient but fails with tiny probability
* Agrawal-Kayal-Saxena has a worse running time, but deterministic

How likely is X to be prime?

* Let t(n) be the number of primes in the set {1, 2, ..., n}

m(n)

* Prime Number Theorem: lim =1

n-oon/Inn

* Chebyshev: t(n) > n/Inn for everyn > 2
* If we want at least k primesin {1, 2, ..., n}, thenn = 2klgk,ifk = 4

 Dusart: For n > 60184, we have > m(n) >

Inn—-1.1 Inn -1

String Equality Problem

x and y are N-bit strings
Alice and Bob want to exchange messages to decide if x =y

Alice could send x to Bob but this takes N communication
* |sthere a more efficient scheme?

e Suppose we are OK if we achieve a probabilistic guarantee:
* If x =y, then Pr[Bob says equal] =1
* If x # y, then Pr[Bob says unequal] = 1 — 6

* Protocol
* Alice chooses a random prime p from {1, 2, ..., M} for M = [2 - (5N) - 1g(5N)]

e She sends Bob p and the value hp(x) = x mod p, where we think of x as an
integerin {0, 1, 2, ..., 2N-1}

* If hp(x) = y mod p, Bob says equal, else he says unequal

* Lemma: If x =y, then Bob always says equal
* Proof: If x =y, then x mod p =y mod p. So Bob’s test will always succeed

* Lemma: If X # vy, then Pr[Bob says equal] < .2

* Proof: Interpretx,y € {0,1,2, ...,2N — 1}
If Bob says equal, then x mod p =y mod p, i.e., (x-y) =0 mod p
So p divides D = |x-y|, and D < 2N
D=pq - py - px for primes p4, ..., px Which may repeat

Since each p; = 2, we have k< N

Pr[p divides D] < s <= = % why?

number of primes in {1,2,...M} = 5N

* If Alice were to naively send x to Bob, would take N bits of
communication

* Instead she sends a prime p and x mod p, where pisin{l, 2, ..., M}
and M = [2 - (5N) - 1g(5N)]

 Communication = O(log p) = O(log M) = O(log N + log log N) = O(log N)
bits

* We have 20% error probability, how to reduce it to 6?

* Repeat the scheme r =log:(6~1) times independently with primes
Py, Pr €4{1,2,..,M},andM = [2 - (5N) - Ig(5N)]
* Bob outputs equal if and only if x =y mod p; for each i
* If x =y, Bob outputs equal with probability 1

lgs(3)
* If x # y, Bob outputs equal with probability at most () <4é
* Communication cost is O(log(1/6) log N). Can we do better?

* If instead Alice sets M = 2 - sN Ig(sN), the number of primesin {1, 2, ..., M} is
at least sN, and so error probability is 1/s. Set s = 1/6.

* Communication is O(log M) = O(log s + log N) = O(log(1/6) + log N)

* In the string-matching problem, we have
* Atext T of length m
* A pattern P of length n

* Goal: output all occurrences of the pattern P inside the text T
 If T = abracadabra and P = ab, the output should be {0,7}

abracadabra

* Consider h,(x) = x mod p forx € {0,1}", where we think of x as an
integerin {0, 1, 2, ..., 2"-1}

* h,(x) = xmod p forx € {0,1}"

* Create x’ by dropping the most significant bit of x, and appending a bit to the right
* E.g., if x=0011001, then x’ could be 0110010 or 0110011

* Given hy,(x) = z, can we compute h,(x") quickly?

* Suppose Xp;, is the lowest-order bit of x’, and xp,}, is the highest order bit of x

¢ X’ = Z(X — Xhbp Zn_l) + le,

* Sinceh,(a+b) = (hp(a) + hp(b)) mod p, and h,(2a) = 2h,(a) mod p,
h,(x') = (th(x) — Xpp - hp(27) + Xl'b) mod p

* Given hy,(x) and h,,(2"™), this is just O(1) arithmetic operations mod p

* T, 1, denotes the string from the a-th to b-th positions of T, inclusive

* Goal: output all locations ain {0, 1, ..., m-n} such that T, ,4ym-1) =P

Pick a random prime p € {1, 2, ..., M} with M = [2s n lg(sn)] for some s
2. Compute h,(P) and h,(2™) and store the results

3. Compute h,(Ty_ 1) and check if it equals h, (P). If so, output match
at location O

4. Foreachi€{Q, .., m-n-1}, compute hy,(Tiy1 j4+n) using hp(Ti_j4n-1)
and h,(2"). Ifhy(Tiyq1 _i+n) = hp(P), output match at location i+1

m —n + 1 < m comparisons, each with probability at most 1/s of failure

By a union bound, the probability there is at least one failure is at most m/s

If s =100m, we succeed on all comparisons with probability = 99/100

M = [2snlg(sn)] = O(mn log(mn)), so O(log m + log n) bits to store
e Sincepin{l, 2, ..., M}, p takes O(log m + log n) bits to store

e Assume unit-cost RAM model, so operations on O(log(mn)) bits take O(1) time

* Computing h,(x) for n-bit x can be done in O(n) time. Why?
* Generate powers of 2, or use shifting

* So h, (P), h,(2"), and h,(Ty, n—1) can be computed in O(n) time

* Computing hy(Ti4 1. j+n) using hy(Ti_i+n—1) and h,(2") can be
done in O(1) time!

* Total time is O(m + n), which is optimal

* Fingerprinting also works for stringsx € {0,1, 2, ...,q — 1}"

* Think of x as an integer }i_¢ 1 q' - X; in its g-ary representation

* Drop the leftmost digit of x to create x’, and append a digit to the right
* If X = X,_1,Xp—2,Xn—3, -, Xg, then X' = x,_5,X,_3, ..., X0, Xg

X' = q(X —Xp-1 Q") + x¢’

* hp(X,) — (q ' hp(X) — Xp-1 - hp(qn) + X(’)) mod p

* Given hj,(x) and h,,(q"), if g < p, computing h,(x") requires O(1)
arithmetic operations mod p

* How would you solve the following?

* Given an myX m,-bit rectangular binary text T, and an n; X n,- bit
pattern P, where n; < m; and n, < m,, find all occurrences of P
inside T. Show how to do thisin O(m;m,) time

* Assume you can do modular arithmetic of integers at most
poly(m;m,) in O(1) time

Walk through the columns of T, and create fingerprints hq (T i4n,-1];) Of the nyvalues

Tij, Tivajp - Titng—1,j
q < poly(m;m;n;)
Walk through the rows of T, and for the (i,j)-th entry, create a fingerprint of the n, values

hg (Tfii+n,-114) Nq(Tiitn, -11j+1) - g (T i+n, —1]j4+n,-1)

Note: the fingerprints are of g-ary instead of binary strings, but when fingerprinting
these strings we can use a prime p < poly(m;m;n;n,). Show this!

Walking through the columns and rows and creating the fingerprints, and comparing
with the hash of the pattern P, takes O(m;m,) time

