
Lecture 7:
Fingerprinting

David Woodruff

How to Pick a Random Prime

• How to pick a random integer X?
• Pick a uniformly random bit string of length
• If it represents a number , output X. Else go back to the last step
• In expectation, repeat this step at most twice

• How to check if X is prime?
• Miller-Rabin primality test very efficient but fails with tiny probability
• Agrawal-Kayal-Saxena has a worse running time, but deterministic

• How likely is X to be prime?

• How to pick a random prime in the range {1, 2, …, M}?

Density of Primes

• Let be the number of primes in the set {1, 2, …, n}

• Prime Number Theorem:
→ /

• Chebyshev: for every
• If we want at least k primes in {1, 2, …, n}, then if

• Dusart: For n > 60184, we have
.

String Equality Problem

x y

Alice Bob

Is x = y?

• x and y are N-bit strings

• Alice and Bob want to exchange messages to decide if x = y

• Alice could send x to Bob but this takes N communication
• Is there a more efficient scheme?

String Equality Problem

• Suppose we are OK if we achieve a probabilistic guarantee:
• If x = y, then Pr[Bob says equal] = 1
• If , then Pr[Bob says unequal]

• Protocol
• Alice chooses a random prime p from {1, 2, …, M} for

• She sends Bob p and the value , where we think of x as an
integer in {0, 1, 2, …, -1}

• If , Bob says equal, else he says unequal

String Equality Problem

• Lemma: If x = y, then Bob always says equal
• Proof: If x = y, then x mod p = y mod p. So Bob’s test will always succeed
• Lemma: If , then Pr[Bob says equal]
• Proof: Interpret

If Bob says equal, then x mod p = y mod p, i.e., (x-y) = 0 mod p
So p divides D = |x-y|, and D <
D = for primes which may repeat
Since each we have k < N

Pr[p divides D]
 , ,…,

why?

Communication Cost

• If Alice were to naively send x to Bob, would take N bits of
communication

• Instead she sends a prime p and x mod p, where p is in {1, 2, …, M}
and

• Communication = O(log p) = O(log M) = O(log N + log log N) = O(log N)
bits

Reducing the Error Probability

• We have 20% error probability, how to reduce it to

• Repeat the scheme r = times independently with primes
{1, 2, …, M}, and

• Bob outputs equal if and only if x = y mod for each i
• If x = y, Bob outputs equal with probability 1

• If , Bob outputs equal with probability at most
()

• Communication cost is O(log(. Can we do better?

• If instead Alice sets M = , the number of primes in {1, 2, …, M} is
at least sN, and so error probability is 1/s. Set s = .

• Communication is O(log M) = O(log s + log N) = O(log(+ log N)

Fingerprinting (the Karp-Rabin Method)
• In the string-matching problem, we have

• A text T of length m
• A pattern P of length n

• Goal: output all occurrences of the pattern P inside the text T
• If T = abracadabra and P = ab, the output should be {0,7}

abracadabra

• Consider for , where we think of x as an
integer in {0, 1, 2, …, -1}

Fingerprinting (the Karp-Rabin Method)

• for
• Create x’ by dropping the most significant bit of x, and appending a bit to the right

• E.g., if x = 0011001, then x’ could be 0110010 or 0110011
• Given , can we compute quickly?

• Suppose is the lowest-order bit of x’, and is the highest order bit of x
•

• Since , and mod p,

• Given and , this is just O(1) arithmetic operations mod p

Fingerprinting (the Karp-Rabin Method)

• … denotes the string from the a-th to b-th positions of T, inclusive
• Goal: output all locations a in {0, 1, …, m-n} such that … ()

1. Pick a random prime p {1, 2, …, M} with for some s
2. Compute and and store the results

3. Compute … and check if it equals . If so, output match
at location 0

4. For each i {0, …, m-n-1}, compute … using …

and If … , output match at location i+1

Error Probability

• comparisons, each with probability at most 1/s of failure

• By a union bound, the probability there is at least one failure is at most m/s

• If s = 100m, we succeed on all comparisons with probability 99/100

• = O(mn log(mn)), so O(log m + log n) bits to store

• Since p in {1, 2, …, M}, p takes O(log m + log n) bits to store

• Assume unit-cost RAM model, so operations on O(log(mn)) bits take O(1) time

Running Time

• Computing for n-bit x can be done in O(n) time. Why?
• Generate powers of 2, or use shifting

• So , and ,…, can be computed in O(n) time

• Computing … using … and can be
done in O(1) time!

• Total time is O(m + n), which is optimal

Fingerprinting Extensions

• Fingerprinting also works for strings

• Think of x as an integer
,…, in its q-ary representation

• Drop the leftmost digit of x to create x’, and append a digit to the right
• If , then

•

•

• Given and , if q < p, computing requires O(1)
arithmetic operations mod p

Extensions

• How would you solve the following?

• Given an -bit rectangular binary text T, and an - bit
pattern P, where and , find all occurrences of P
inside T. Show how to do this in time

• Assume you can do modular arithmetic of integers at most
poly(in O(1) time

Extensions

• Walk through the columns of T, and create fingerprints , , of the values

, , ,

•

• Walk through the rows of T, and for the (i,j)-th entry, create a fingerprint of the values

, , , , , ,…, , ,

• Note: the fingerprints are of q-ary instead of binary strings, but when fingerprinting
these strings we can use a prime . Show this!

• Walking through the columns and rows and creating the fingerprints, and comparing
with the hash of the pattern P, takes time

