
Lecture 6: The Data
Stream Model

David Woodruff

Data Streams

• A stream is a sequence of data, that is too large to be stored in available memory

• Examples

• Internet search logs

• Network Traffic

• Sensor networks

• Scientific data streams (astronomical, genomics, physical simulations)…

Streaming Model

• Stream of elements a1, …, ai, … each from an alphabet and
taking b bits to represent

• Single or small number of passes over the data

• Almost all algorithms are randomized and approximate
• Usually necessary to achieve efficiency
• Randomness is in the algorithm, not the input

• Goals: minimize space complexity (in bits), processing time

…2113734

Example Streaming Problems
• Let ଵ:୲ ଵ ୲ be the first t elements of the stream

• Suppose ଵ ୲ are integers in {- ୠ 1, - ୠ …, -1, 0, 1, 2, …, ୠ-1}
• Example stream: 3, 1, 17, 4, -9, 32, 101, 3, -722, 3, 900, 4, 32

• How many bits do we need to maintain f(ଵ:୲) ୧

୧ୀଵ,…,୲ ?

• Outputs on example: 3, 4, 21, 25, 16, 48, 149, 152, -570, -567, 333, 337, 379, …
• O(b + log t)

• How many bits do we need to maintain f(ଵ:୲)
୧ୀଵ,…,୲

୧?

• Outputs on example: 3, 3, 17, 17, 17, 32, 101, 101, 101, 101, 900, 900, 900, …
• O(b) bits

Example Streaming Problems

• The median of all the numbers we’ve stored so far
• Example stream: 3, 1, 17, 4, -9, 32, 101, 3, -722, 3, 900, 4, 32
• Median: 3, 1, 3, 3, 3, 3, 4, 3, …
• This seems harder…

• The number of distinct elements we’ve seen so far?
• Outputs on example: 1, 2, 3, 4, 5, 6, 7, 7, 8, 8, 9, 9, 9, …

• The elements that have appeared at least an -fraction of the time?
These are the -heavy hitters
• Cover today

Many Applications

• Internet router may want to figure out which IP connections are heavy
hitters, e.g., the ones that use more than .01% of your bandwidth

• Or maybe the router wants to know the median (or 90-th percentile)
of the file sizes being transferred

• Hashing is a key technique

• ୲ is the multiset of items at time t, so ଴ , ଵ ଵ ୧ ଵ ୧ ,
୲ ୧

• is an -heavy hitter at time t if ୲

• Given can we output the -heavy hitters?

• Let’s output a set of size ଵ
஫

containing all the -heavy hitters

• Note: can output “false positives” but not allowed to output “false negatives”, i.e.,
not allowed to miss any heavy hitter, but could output non-heavy hitters

Finding -Heavy Hitters

Finding -Heavy Hitters

• Example: E, D, B, D, ହ D, B, A, C, ଵ଴ B, E, E, E, ଵହ, E
(the subscripts are just to help you count)

• At time 5, the element D is the only 1/3-heavy hitter
• At time 11, both B and D are 1/3-heavy hitters
• At time 15, there is no 1/3-heavy hitter
• At time 16, only E is a 1/3-heavy hitter

Can’t afford to keep counts of all items, so how to maintain a short
summary to output the -heavy hitters?

Finding a Majority Element
• First find a .5-heavy hitter, that is, a majority element:

memory empty and counter 0
when element ୲ arrives

if (counter == 0)
memory ୲ and counter

else
if ୲ memory

counter + +
else

counter - -
(discard ୲)

• At end of the stream, return the element in memory

Memory = 3, Count = 1
Memory = 3, Count = 0
Memory = 2, Count = 1
Memory = 2, Count = 0
Memory = 1, Count = 1

Analysis of Finding a Majority Element
• If there is no majority element, we output a false positive, which is OK

• If there is a majority element, we will output it. Why?

• When we discard an element ୲, we throw away a different element

• When we throw away a copy of a majority element, we throw away another element
• Either majority element is in memory, or majority element arrives in stream but

some other item is in memory

• Majority element is more than half the total number of elements, so can’t throw
away all of them

Extending to -Heavy Hitters

Set ଵ

஫

Array T[1, …, k], where each location can hold one element from
Array C[1, …, k], where each location can hold a non-negative integer
C[i] 0 and for all i

If there is such that ୲ , then
Else if some counter C[j] = 0 then ୲ and C[j]
Else decrement all counters by 1 (and discard element ୲)

୲ if for some j, and ୲ 0 otherwise

Analyzing Counts

• Lemma: ୲ ୲
୲

୩ାଵ

• Proof: ୲ ୲ since we never increase a counter for e unless
we see e

If we don’t increase ୲ by 1 when we see an update to e, we decrement k
counters and discard the current update to e

So we drop k+1 distinct stream updates, but there are t total updates, so we
won’t increase ୲ by 1, when we should, at most ୲

୩ାଵ
times

Heavy Hitters Guarantee

• At any time t, all -heavy hitters e are in the array T. Why?

• For an -heavy hitter e, we have ୲ >

• But ୲ ୲

• So ୲ > 0, so e is in array T

• Space is O(k (log(+ log t)) = O(1/) (log(+ log t) bits

Heavy Hitters with Deletions
• Suppose we can delete elements e that have already appeared

• Example: (add, A), (add, B), (add, A), (del, B), (del, A), (add, C)

• Multisets at different times
଴ ଵ ଶ ଷ ସ ହ

଺

• “active” set ୲ has size ୲ ୲

ୣ∈ஊ and can grow and shrink

Data Structure for Approximate Counts
• Query “What is ୲ ”, should output ୲ with:

୲ ୲ ୲

• Want space close to our previous O(1/) (log(+ log t) bits
• Let be a hash function (will specify later)
• Maintain an array A[0, 1, …, k-1] to store non-negative integers

when update ୲ arrives:
if ୲ then
else ୲ , and

• ୲

Data Structure for Approximate Counts

• ୲
ᇱ ᇱ

ୣᇲ∈ஊ , where 1(condition)
evaluates to 1 if the condition is true, and evaluates to 0 otherwise

• = ୲ ୲
ᇱ

ୣᇲஷୣ
ᇱ ,

• ୲ ୲ ୲
ᇱ ᇱ

ୣᇲஷୣ

• Since we have a small array A with k locations, there are likely many
ᇱ with h(e’) = h(e), but can we bound the expected error?

Data Structure for Approximate Counts
• Recall: Family H of hash functions h: U -> {0, 1, …, k-1} is universal if for all ,

୦←ୌ

• Gave a simple family where h can be specified using O(log) bits. Here, |U| =

• E[୲ ୲ ୲
ᇱ ᇱ

ୣᇲஷୣ]
= ୲

ᇱ
ୣᇲஷୣ

ᇱ]
= ୲

ᇱ ᇱ
ୣᇲஷୣ]

୲
ᇱ ଵ

୩

ୣᇲஷୣ

= ୗ౪ ି ୡ୭୳୬୲౪ ୣ

୩

ୗ౪

୩

k = makes this at most ୲ . Space is ଵ

஫
counters plus storing hash function

High Probability Bounds for CountMin

• Have ୲ ୲ ୲ in expectation from CountMin
• With probability 1/2, ୲ ୲ ୲ Why?

• Can we make the success probability 1- ?
• Independent repetition: pick m hash functions ଵ ୫ with

୧ independently from H. Create array ୧ for ୧

when update ୲ arrives:
for each i from 1 to m

if ୲ then ୧ ୧

else ୲ and ୧ ୧

High Probability Bounds and Overall Space

What is our new estimate of ୲ ?

• Each ୧ ୧ is an overestimate to ୲

• By independence, Pr[for all i, ୧ ୧ ୲ ୲
ଵ

ଶ

௠

• For ଶ

஫
and m = ଶ

ଵ

ஔ
, the error is at most ୲ with probability 1-

• Space:
୪୭୥

భ

ಌ

஫
counters each of O(lg t) bits

ଵ

ஔ
bits to store hash functions

-Heavy Hitters

• Our new estimate ୲ satisfies
୲ ୲ ୲

and uses
୪୭୥

భ

ಌ
୪୭୥ ୲

஫

ଵ

ஔ
bits of space

• What if we want with probability 9/10, simultaneously for all e,
୲ ୲ ୲ ?

• Set ଵ

ଵ଴ ஊ
and apply a union bound over all

