Lecture 5: Hashing

David Woodruff

Hashing

* Universal hashing

* Perfect hashing

Maintaining a Dictionary

* Let U be a universe of “keys”
* U could be all strings of ASCII characters of length at most 80

* Let S be a subset of U, which is a small “dictionary”
S could be all English words

* Support operations to maintain the dictionary
* Insert(x): add the key x to S
e Query(x):is the key xin S?
* Delete(x): remove the key x from S

Dictionary Models

* Static: don’t support insert and delete operations, just optimize for fast
guery operations
* For example, the English dictionary does not change much
* Could use a sorted array with binary search

* Insertion-only: just support insert and query operations

* Dynamic: support insert, delete, and query operations
e Could use a balanced search tree (AVL trees) to get O(log |S|) time per operation

* Hashing is an alternative approach, often the fastest and most convenient

Formal Hashing Setup

Universe U is very large
* E.g., set of ASCII strings of length 80 is 1288°

Care about a small subset S c U. Let N = |S].
* S could be the names of all students in this class

Our data structure is an array A of size M and a “hash function” h: U - {0, 1, ..., M-1}.
* Typically M < U, so can’t just store each key x in A[x]
* Insert(x) will try to place key x in A[h(x)]

But what if h(x) = h(y) for x # y? We let each entry of A be a linked list.
* To insert an element x into A[h(x)], insert it at the top of the list
* Hope linked lists are small

How to Choose the Hash Function h?

* Want it to be unlikely that h(x) = h(y) for different keys x and y
* Want our array size M to be O(N), where N is number of keys

* Want to quickly compute h(x) given x
* We will treat this computation as O(1) time

 How long do Query(x) and Delete(x) take?
* O(length of list A[h(x)]) time

 How long does Insert(x) take?
* O(1) time no matter what

* How long can the lists A[h(x)] be?

Bad Sets Exist for any Hash Function

e Claim: For any hash function h: U ->{0, 1, 2, ..., M-1},if |U| = (N — 1)M + 1,
there is a set S of N elements of U that all hash to the same location

* Proof: If every location had at most N-1 elements of U hashing to it, we would
have |U < (N—1)M

* There’s no good hash function h that works for every S. Thoughts?

* Universal Hashing: Randomly choose h!

* Show for any sequence of insert, query, and delete operations, the expected number of
operations, over a random h, is small

Universal Hashing

* Definition: A set H of hash functions h, where each h in H maps
U->{0,1,2,.. M-1}is universal if forall x # vy,

1
hBIi—I[h(X) =h(y)] < i

* The condition holds for every x # vy, and the randomness is only over the
choice of h from H

[heH h(0=h()] _

* Equivalently, for every x # y, we have: H]| = %

Universal Hashing Examples

Example 1: The following three hash families with hash functions mapping the set {a,b} to {0,1} are
universal, because at most 1/M of the hash functions in them cause a and b to collide, were M = {0, 1}|.

a b a b r ([; 8
hill0 0 hll 0 1 .
ha Il 01 ha Il 10 |10
L — hs | 01

Examples that are Not Universal

|a b hy |l :; 3 (1
: Ly
hy | 0 0 ha !l 1 1 0
,13 ’] | h.;; ‘ 1 I

* Note that a and b collide with probability more than 1/M =1/2

Universal Hashing Example

* The following hash function is universal with M = |{0,1,2}|

a b ¢
ho || 0O 0 0 <+« Note!
’t 1 0 1 2
ha 1 2 0
hs 2 0 1

Using Universal Hashing

* Theorem: If H is universal, then for any set S € U with |S| =N, forany x €
S, if we choose h at random from H, the expected number of collisions
between x and other elements in S is less than N/M.

* Proof: Fory € S withy # x, let Cyxy = 1if h(x) = h(y), otherwise Cxy, = 0

Let Cx = Xy=x Cxy be the total number of collisions with x
1
E[Cxy] = Pr[h(x) = h(y)] < -

By linearity of expectation, E[Cx] = Xyx E[Cxy] < %

Using Universal Hashing

* Corollary: If H is universal, for any sequence of L insert, query, and delete
operations in which there are at most M keys in the data structure at any
time, the expected cost of the L operations for a random h € H is O(L)

* Assumes the time to compute h is O(1)

* Proof: For any operation in the sequence, its expected cost is O(1) by the
last theorem, so the expected total cost is O(L) by linearity of expectation

But how to Construct a Universal Hash Family?

* Suppose |U| = 2" and M = 2™
* Let A be arandom m x u binary matrix, and h(x) = Ax mod 2

u

L

x A hiz) = Ax

e Claim: forx # v, P;lr[h(x) = h(y)] =

But how to Construct a Universal Hash Family?

: — - 1_1
* Claim: Forx #y, P;lr[h(x) = h(y)] = = om
* Proof: A-xmod 2 = }; A;X; mod 2, where A; is the i-th column of A
If h(x) = h(y), then Ax=Ay mod 2, so A(x-y) =0 mod 2
If X # y, there exists an i* for which x;+ # y;
Fix Aj for all j # i*, which fixes b = X« Aj(X;—y;) mod 2
A(x-y) =0mod 2 ifand only if A= b
11
Eil;[Ai* =b] =—

2m M

So h(x) = Ax mod 2 is universal

k-wise Independent Families

* Definition: A hash function family H is k-universal if for every set of k distinct
keys X4, ..., Xy and every set of k values vy, ..., v € {0,1, ..., M — 1},

Prfh(x;) = v; AND h(x,) = v, AND ... AND h(xy) = v] -

- MK
* If H is 2-universal, then it is universal. Why?
* h(x) = Ax mod 2 for a random binary A is not 2-universal. Why?

* Exercise: Show Ax + b mod 2 is 2-universal, where Ain {0,1}™*" and b €
{0,1}™ are chosen independently and uniformly at random

More Universal Hashing
* Given a key x, suppose X = [Xq, ..., Xx]| where each x; € {0, 1, ..., M — 1}
* Suppose M is prime

* Choose randomry,.., 1 € {0,1,...,M — 1} and define
h(X) = r{xy + 5%, + ...+ ryxg mod M

* Claim: the family of such hash functions is universal, that is,
P;lr[h(x) = h(y)] < %for all distinct x and y

More Efficient Universal Hashing

e Claim: the family of such hash functions is universal, that is,
lilr[h(x) = h(y)] < %for all x #vy

* Proof: Since x # y, there is an i* for which x;+ # y;*

Let h'(x) = X 15X, and h(x) = h’(x) + rj+X;- mod M

If h(x) = h(y), then h’(x) + rj=X;+= h’(y) + rj<y; mod M
h'(y)-h'(x)

Xj*—Yi*

Sory(Xj- —yi+) = h'(y) —h'(x) mod M, or rjx = mod M

This happens with probability exactly 1/M

Perfect Hashing

 If we fix the dictionary S of size N, can we find a hash function h so that all query(x)
operations take constant time?

N |-

e Claim: If H is universal and M = N?, then hPrH[no collisions in S| >

* Proof: How many pairs {x,y} of distinct x,y in S are there?
Answer: N(N-1)/2
For each pair, the probability of a collision is at most 1/M

Pr[exists a collision]< (N(N-1)/2)/M < %

Just try a random h and check if there are any collisions
Problem: our hash table has M = N2 space! How can we get O(N) space?

Perfect Hashing in O(N) Space — 2 Level Scheme

* Choose a hash function h: U = {1, 2, ..., N} from a universal family

* Let L; be the number of items x in S for which h(x) =i

* Choose N “second-level” hash functions h4, h,, ..., hy, where h;: U - {1, ...,L%}

L1

N -
LTI T LT T

s

r

L]

—Li—

- I4

y

[T

2
—

-

CTTT

9
Lio

-

By previous analysis, can
choose hash functions

hy, h,, ..., hy so that there are
no collisions, so O(1) time

Hash table size is };—1 _, L
How big is that??

Perfect Hashing in O(N) Space — 2 Level Scheme

* Theorem: If we pick h from a universal family H, then

5 1
E Ly > 4N
h<—H 2

* Proof: It suffices to show E[};; L%] < 2N and apply Markov’s inequality
Let Cx, = 1if h(x) = h(y). By counting collisions on both sides, }; L? = Yxy Cxy

Ifx =y, then Cyy = 1.Ifx # y, then E[Cyy] = Pr[Cyy = 1] < =
E[XiL%] = YxyE[Cxy] = N+ Zyuy E[Cxy] S N+ N(N—1)/N<2N

So choose arandom hin H, check if };_; L? < 4N, and if so, then choose hy, ..., hy

