Topic 2: Concrete Models and
Tight Upper and Lower Bounds

David Woodruff

* Number of comparisons to sort an array

* Number of exchanges to sort an array

 Number of comparisons needed to find the largest and second-largest
elements in an array

* Number of probes into a graph needed to determine if the graph is
connected

* Look at models which specify exactly which operations may be
performed on the input, and what they cost
* E.g., performing a comparison, or swapping a pair of elements

* An upper bound of f(n) means the algorithm takes at most f(n) steps
on any input of size n

* A lower bound of g(n) means for any algorithm there exists an input
for which the algorithm takes at least g(n) steps on that input

* In the comparison model, we have n items in some initial order

An algorithm may compare two items (asking is a; > a;?) at a cost of 1
* Moving the items is free

* No other operations allowed, such as XORing, hashing, etc.

* Sorting: given an array a = [a4, ..., @], output @ permutation 1 so that
lar(1), ---» An(n)] iN Which the elements are in increasing order

* Theorem: Any deterministic comparison-based sorting algorithm must
perform at least Ig, (n!) comparisons to sort n elements in the worst case

* |.e., for any sorting algorithm A and n = 2, there is an input | of size n so
that A makes > lg(n!) = Q(nlogn) comparisons to sort I.

* Need to rule out any possible algorithm

* Proof is information-theoretic

* Proof: Suppose there is a problem with M possible outputs

* For sorting M = n! since for each possible output permutation T, there is an input
for which the outputis

» Suppose for each possible output, there is an input for which that output
is the only correct answer

* For sorting there are inputs for which 1 is the only correct answer

* Then there is a lower bound of lgM
e Consider a set of inputs in 1-to-1 correspondence with the M possible outputs
* Algorithm needs to find out which of the M inputs we have
* There’s a path removing at most half of the possible inputs at each node

azsag

213
312
321

213
312

NO

123

132
213
231
312
321
YES NO
. a; = a;
NO YES/
////// al
371 123
132

NO

231

* Information-theoretic: need lg(n!) bits of information about the input
before we can correctly decide on the output

e lg(n!) =1g(n) +lglh —1) +1gh —2) + ...+ 1g(1) < nlgn
e lg(n!)) =lgn) +1lgln—1) +1lglh —2) + ...+ 1g(1) > (g) Ig (g) = Q(nlgn)

n

n
. n!E[(E) ,n"], sonlgn —nlge <lIg(n!) <nlgn
nlgn —1.443n < Ig(n!) < nlgn

* Ig(n!) = (nlgn) (1 —o(1))

* Suppose for simplicity n is a power of 2

* Binary insertion sort: using binary search to insert each new element,
the number of comparisons is X, _, ,[lgk] < nlgn
may need to move items around a lot, but only counting comparisons

* Mergesort: merging two sorted lists of n/2 elements requires at most n-1
comparisons
* Unrolling the recurrence, total number of comparisons is

(n—1)+2(2—1)+4G—1)+---+2(2—1)=nlgn —(n—1) <nlgn

How many comparisons are necessary and sufficient to find the maximum of n
elements in the comparison model?

Claim: n-1 comparisons are sufficient

Proof: scan from left to right, keep track of the largest element so far

For lower bounds, what does our earlier information-theoretic argument give?
* Only Q(logn), which is too weak

Also, we have to look at all elements, otherwise we may have not looked at the largest,
but that can be done with n/2 comparisons, also not tight

* Claim: n-1 comparisons are needed in the worst-case to find the maximum
of n elements

* Proof: suppose A is an algorithm which finds the maximum of n distinct
elements using fewer than n-1 comparisons

* Construct a graph G in which we join two elements by an edge if they are
compared by A

* G has at least 2 connected components C; and C,

* Suppose A outputs element u as the maximum, andu € C;

* Add a large positive number to each element in C,

* Does not change any of the comparisons made by A, so will still output u
* But now u is not the maximum, so A is incorrect

* Recap: upper and lower bounds match at n-1

* Argument different from information-theoretic bound for sorting

* |Instead,

e if algorithm makes too few comparisons on some input In and
outputs Out,

* find another input In” where the algorithm makes the same
comparisons and also outputs Out,

e but Out is not a correct output for In’

e If algorithm makes “too few” comparisons, fool it into giving an incorrect answer

* Any deterministic algorithm sorting 3 elements requires at least 3 comparisons
* |f < 2 comparisons, some element not looked at and the algorithm is incorrect

 After first comparison, 3 elements are w, |, and z, the winner and loser of the
first comparison, as well as the uninvolved item

* |If the second query is between w and z, say
* wis larger
* |If the second query is between | and z, say
* |is smaller
e Algorithm needs one more comparison for correctness

* Goal: answer comparisons so that (a) answers consistent with some input In,
(b) answers make the algorithm perform “many” comparisons

 How many comparisons are necessary (lower bound) and sufficient
(upper bound) to find the first and second largest of n distinct
elements?

* Claim: n-1 comparisons are needed in the worst-case

* Proof: need to at least find the maximum

* Claim: 2n-3 comparisons are sufficient to find the first and second-
largest of n elements

* Proof: find the largest using n-1 comparisons, then find the largest of
the remainder using n-2 comparisons, so 2n-3 total

* Upper bound is 2n-3, and lower bound n-1, both are @(n) but can we
get tight bounds?

* Claim: n + lgn — 2 comparisons are sufficient to find the first and
second-largest of n elements

* Proof: find the maximum element using n-1 comparisons by grouping
elements into pairs, finding the maximum in each pair, and recursing

(' 4 1 7
Round 1 / \ b \ /

Round 2 \ / \ /
Round 3 \ /

* What can we say about the second maximum?
* Must have been directly compared to the maximum and lost, so Ig(n)-1
additional comparisons suffice. Kislitsyn (1964) shows this is optimal

e Consider a shelf containing n unordered books to be arranged
alphabetically. How many swaps to we need to order them?

* In the exchange model, you have n items and the only operation
allowed on the items is to swap a pair of them at a cost of 1 step

* All other work is free, e.g., the items can be examined and
compared

* How many exchanges are necessary and sufficient?

* Claim: n-1 exchanges is sufficient
* Proof: here’s an algorithm:
* In first step, swap the smallest item with the item in the first location

* In second step, swap the second smallest item with the item in the
second location

* In k-th step, swap the k-th smallest item with the item in the k-th
location

* If no swap is necessary, just skip a given step
* No swap ever undoes our previous work
* At the end, the last item must already be in the correct location

* Claim: n-1 exchanges are necessary in the worst case

* Proof: create a directed graph in which the edge (i,j) means the book
in location i must end up in location j

O

Figure 1: Graph for input [f ¢ d e b a g]

* Graph is a set of cycles
* Indegree and Outdegree of each node is 1

* What is the effect of exchanging any two elements in the same cycle?
» Suppose we have edges (iy,j;) and (i,,j,) and swap elements in locations i; and i,

* This replaces these edges with (i, j;) and (i1, j,) since now the item in position i,
need to go to j; and item in position i; need to goto j,

* Since i; and i, in the same cycle, now we get two disjoint cycles
J1
14 1§

)2

* What is the effect of exchanging any two elements in different cycles?

* If we swap elements i; and i, in different cycles, similar argument
shows this merges two cycles into one cycle

J2

* What is the effect of exchanging any two elements in the same cycle?
* Get two disjoint cycles

* What is the effect of exchanging any two elements in different cycles?
* Merges two cycles into one cycle

e Corner cases also result in self loop and create two disjoint cycles

* How many cycles are in the final sorted array?
* n cycles

* Suppose we begin with an array [n, 1, 2, ..., n-1] with one big cycle

* Each step increases the number of cycles by at most 1, so need n-1
steps

* Let G be the adjacency matrix of an n-node graph
* GJ[i,j] =1 if thereis an edge between i and j, else GJ[i,j] =0

* In 1 step, we can guery any element of G. All other computation is free
* How many queries do we need to tell if G is connected?

* Claim: n(n-1)/2 queries suffice

* Proof: Just query every pair {i,j} to learn G, then check if G is connected

 What about lower bounds?

* Theorem: n(n-1)/2 queries are necessary to determine connectivity

* Proof: adversary strategy: given a query G[u,v], answer O unless the
graph consistent with all of your responses so far, which also satisfies
G[u’, v'] = 1 for each unasked pair {u’,v’}, is disconnected

* Invariant: for any unasked pair {u,v}, the graph revealed so far has no
path fromutov

* Reason: consider the last edge {u’,v’'} revealed on that path. Could have
answered 0 and kept same connectivity by having edge {u,v} be present

* Theorem: n(n-1)/2 queries are necessary to determine connectivity

* Proof: adversary strategy: given a query G[u,v], answer 0 unless the
graph consistent with all of your responses so far, which also satisfies
G[J’, v'] = 1 for each unasked pair {u’,v’}, is disconnected

* Invariant: for any unasked pair {u,v}, the graph revealed so far has no
path fromutov

* Suppose there is some unasked pair {u,v} by the algorithm
* If algorithm says “connected”, we place all Os on unasked pairs
* If algorithm says “disconnected”, we place all 1s on unasked pairs

* So algorithm needs to query every pair

