451/651 Lecture 21 — Smallest Enclosing Circle

Problem: Given n > 2 points in the plane, find the smallest
enclosing circle that contains these points.

Ground Rules:
» The points are pairs of real numbers p; = (x;, y;)-

» Arithmetic on reals can be done in O(1) time.

Let SEC(pa, ..., pn) denote the smallest enclosing circle of points
P15 Pn-

In this lecture we present a randomized incremental algorithm to
compute the SEC(p1, ..., pn) in expected O(n) time.



Base Cases

n=2:
C= = (f4h)
r=glr-fl
PL
n = 3 Obtuse triangle: n = 3 Acute triangle:

(Explain how to find the center,
and why this is optimum.)



Uniqueness of the SEC

Theorem 1: The SEC(py, ..., ps) is unique.

Proof: By contradiction. Suppose there are two distinct SECs.

The picture shows that if there are two distinct SECs then there’s
a smaller SEC than the one asserted to be the smallest. O



Characterization of the SEC

If we take any pair of points and halve the distance between them,
that's obviously a lower bound on the radius of the SEC.

If we take any triple of points the form an acute triangle and take
the circumradius of it, that's also obviously a lower bound on the
radius of the SEC.

It turns out that if we take the maximum of all these lower bounds,
this will in fact equal the radius SEC. We will now prove this.



Characterization of the SEC

Theorem 2: For n > 3 the SEC(px, ..., pn) is the SEC(pj, pj, pk)
for some set of distinct indices i, j, k.

This means that we can find the SEC of all n points by just
computing the SEC(pj, pj, px) for all i, j, k, and taking the one of
maximum radius r. Because given that triple of points there is
only one circle of radius r that can contain them. So by the
theorem it must contain all the points.

This immediately gives an O(n3) algorithm for the problem.



Helly's Theorem

Our proof will make use of this theorem:

Helly’'s Theorem: Let Xi,..., X, be a finite collection of convex
subsets of RY, with n > d + 1. If the intersection of every d + 1 of
these subsets is non-empty, then the whole collection has a
non-empty intersection; that is,

N X #o.

Jj=1

We only need this for d = 2 so it says that if in a collection of
convex 2D sets every three intersect, then they all intersect.



Proof of Theorem 2

Proof: Compute the radius r which is the maximum of the radii of
all the SECs of the triples of points p;, p;, pk.

Now consider the ball B; centered at p; of radius r. It must be the
case that B;( B;( Bx # @ for all i, j, k.

Therefore it follows from Helly's theorem that all the balls
intersect. Pick the circle with radius r whose center is in the
mutual intersection of all the balls. By construction all the points
must be in that circle.

Furthermore let (pj, pj, pk) be three points whose SEC has radius
r. This SEC is the unique circle of radius r containing p;, pj, px.
Therefore it must also be the circle found by the application of
Helly’'s Theorem.



Towards an Incremental Algorithm

Suppose we've computed the SEC of points p1,...py—1. What
happens when we add another point p, to the set?

There are two cases. (1) p, is in the SEC of the previous n — 1
points. (2) It's not. Here's an example:

It turns out that in case (2) the new point must be on the
boundary of the SEC of all the points.



Towards an Incremental Algorithm

So we have the following theorem:

Theorem 3: For a set of points {p1,...,pn}, let
C1 == SEC(pl, NP ,pn_l) and C2 = SEC(pl7 NN pn). If C1 75 C2
then p, is on the boundary of G.

Proof: By the uniqueness of the SEC (Theorem 1) we know that
radius(C;) < radius(C,). But we know from Theorem 2 that these
radii are just the maximum over all triples of points in their
respective sets. The only way that (> can have a larger radius
than (i is if p, is involved in the triple causing that to happen.
Therefore p, must be on G,. O



A Randomized Incremental Algorithm

SEC([p17p27 o apTLD = {
Randomly permute the input points, so [p1,. .., pn]
is a random permutation of the given points.

Let C be the smallest circle enclosing p; and ps.
(This is just the circle for which p; and ps form a diameter.)

fori =3 ton do

// at this point C is the smallest enclosing circle for [py, ..., p;—1]
if p; is not in C then C < SEC1([p1,...,pi—1], i)

done

return C'

Here SEC1([p1, ..., pi-1], pi) computes the SEC of {p1,...,pi}
given that p; is on the boundary of the SEC of {p1,...,p;}.



Analyzing the Algorithm

Assuming that SEC1 (called on a set of i points) is O(/i) expected
time, then SEC(p1, ..., pn) is O(n) expected time.

Proof: Backward analysis. Recall from Theorem 2 that there are
two or three points that determine the SEC of all the points.
Unless we choose to delete one of these points the SEC will not
change. So C; # C;_1 with probability at most %

i—3

i

E[Cost of step 1] = O(i) + % + o)« =2 = oq)



SEC1

SECI([plap% e 7pn]: q) = {
We know that the point ¢ is on the SEC containing p1, .. . pn, g

Randomly permute the input points, so [pi,...,px)
is a random permutation of the given points.

Let C be the smallest circle enclosing p; and gq.

for i =2 to n do
// at this point C' is the smallest enclosing circle for [p1,...,pi—1,4]
if p; is not in C then C + SEC2([py, . .., pi-1], Pi, q)

done

return C'

}

Here SEC2([p1, . .., pi-1], pi, q) computes the SEC of
{p1,...,pi,q} in O(i) time given that p; and g are on the
boundary of the SEC of {p1,..., pi, q}.

Proof that it's O(i) expected time is the same as that for SEC.



SEC2

SEC2([p1, p2, - - -, P, 41, 42) = {
We know that the point ¢; and gy are on the SEC containing p1,...pn, g1, q2-
Let C be the smallest circle enclosing ¢; and ¢a.

fori=1ton do
// at this point C' is the smallest enclosing circle for [p1,...,pi—1,q1, g2]
if p; is not in C then C <« Circle through points (p;, g1, ¢2)

done

return C'

This is a deterministic linear time algorithm.



Final Notes

It can be proven that there is no need to compute a random
permutation inside of SEC1. One random permutation at the
beginning in SEC sufficies.

The code can be consolidated into a single recursive function,
where an additional argument passes the points that must be on
the boundary.

The same algorithm can be easily extended to d dimensions. In
this case, as in Seidel’s algorithm, the bound is O(n d!), so the
dependence on n is linear and the dependence on d is exponential.



