451/651 Lecture 19 - Geometric Algorithms

Solving low-dimensional problems involving geometric objects ... points, lines, circles, polygons, etc.

In addition to their practical applications, these problems and their algorithms lead to a lot of very interesting and generally applicable data structures and algorithmic techniques.

Part 1: 2-Dimensional Geometric Primitives.

- A point: It's generally represented as a pair $p=(x, y)$ of real numbers. (Other representations are possible.)
- Real Arithmetic Assumption: We allow arithmetic on real numbers and assume that it takes $\mathrm{O}(1)$ time.
- This assumption is not to be abused.

Primitives, contd

Adding and subtracting points:

Cross Product:

Dot Product:
Scalar Mult:

Length:

Normalization:

Rotation:

Meaning of the cross product

Meaning of the dot product

Of course we've seen this before. The objective function of an LP is a dot product.

The line through $(0,0)$ perpendicular to the line $((0,0), v)$ is the set of points w such that $w \cdot v=0$.

In general the set of points w such that $w \cdot v=c$ (some constant) is a line perpendicular to the vector v. some distance $c /|v|$ from the origin. So if v is normalized $w \cdot v$ is the signed distance from the perpendcular through the origin.

More on the dot product

Given two vectors v and w we have that $v \cdot w=|v||w| \cos (\alpha)$ where α is the angle between v and w. This means that we can compute the angle between two vectors v and w by computing

$$
\alpha=\cos ^{-1}\left(\frac{v}{|v|} \frac{w}{|w|}\right)
$$

Representing Lines: Two Standard Ways

$$
A x+B y=C
$$

where A, B and C are constants is the equation of a line. (A and B cannot both be zero.) This is the same as saying that $(A, B) \cdot(x, y)=C$.

Other method: Given a pair of distinct points p and q, it's the unique line through those two points.

Can convert between the two representations.
Take the line through (p, q). Let $v=\operatorname{rot} 90 \operatorname{cc}(p-q)$.
Now

$$
v \cdot(x, y)=v \cdot p
$$

is its dot product representation.

Distance to a line

Take the line $L: A x+B y=C$. Where the vector (A, B) is normalized, i.e. $A^{2}+B^{2}=1$.)
Then for any point $p,(A, B) \cdot p$ is its signed distance from the line L.

Take the line L : through points a and b. Let $v=(b-a) /|b-a|$. Then the signed distance from p to L is

$$
(p-a) \times v
$$

Line Side Test

Given a line through points p and q, from $p \rightarrow q$ which side of that directed line is a on? LEFT, ON, RIGHT?

Let $v=q-p$, and $w=a-p$
Take $v \times w$.
If >0 a is to the LEFT of $p \rightarrow q$
if <0 a is to the RIGHT of $p \rightarrow q$
$i f=0 q$ is $O N p \rightarrow q$

Convex Combination of Points

Given $p_{1}, p_{2}, \ldots, p_{n}$ a convex combination of them is $\alpha_{1} p_{1}+\alpha_{2} p_{2}+\cdots+\alpha_{n} p_{n}$. Where the α s are non-negative scalars that sum to 1 .

Example $n=2$: It's the segment connecting the two points.

For $n=3$ it fills the triangle. (show general case)

Convex Sets

A set C of points in R^{d} is convex if for any points p, q in C the convex combination of p and q is also in C.
(Examples of convex and non-convex sets)

The intersection of any two convex sets is convex (proof trivial from the definition)

Note: The half plane is convex, so the intersection of half planes is convex (i.e. a convex polytope, i.e. the feasible region of an LP.)

Part 2: The Convex Hull Problem

Given a set of points p_{1}, \ldots, p_{n} in 2D, compute the convex hull of the points. I.e. the bounary of the convex combination of the points.

Intuitively the convex hull can be computed with the following analog computer: Put nails in a board at the points p_{1}, \ldots, p_{n}. Now let a rubber band stretched around all of them snap in. The points it touches, and the order of them around that polygon is the convex hull of $p 1, \ldots, p_{n}$.

Convex Hull Contd.

Input: A set of points p_{1}, \ldots, p_{n}. We assume for clarity that no three of them are colinear.

Output: A sequence from among p_{1}, \ldots, p_{n} of the convex hull of the points in counter-clockwise order.

An $O\left(n^{3}\right)$ algorithm

Try all pairs to see if it's a convex hull boundary. Stitch the selected ones together.

An $O\left(n^{2}\right)$ algorithm

Graham Scan: an $O(n \log n)$ algorithm

An $O(n \log n)$ lower bound for convex hull

