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1 Prediction with Expert Advice

Today we’ll study the problem of making predictions based on expert advice. There are n “experts”
(who are just people with opinions, the quotes suggesting that they may or may not have any
expertise in the matter). Each day the following sequence of events happens:

• We see the n experts’ predictions of the outcome.

• We make our own prediction about the outcome.

• In parallel, the actual outcome is revealed.

• We are correct if we made the right prediction, and make a mistake otherwise.

This process goes on indefinitely. Our goal: at any time (say after some T days), if the best of the
experts so far has made only few mistakes, we want to have made “not too many more” mistakes.
We want to bound the number of mistakes, and hence this is called the “mistake-bound” model.

2 Warmup: Simple Strategies

To start off, say we have just “Up/Down” predictions. (If the market will go up or down, or if the
weather will be fair or not.)

Suppose we know the best expert makes no mistakes. Can we hope to make only a few mistakes?
Here’s a strategy that makes only blog2 ncmistakes. Just predict what the majority of the remaining
experts predicts. (In case of a tie, choose arbitrarily.) Take all the experts that are wrong and
disgard them. So each time we make a mistake, we reduce by the number of experts by at least
1/2. This means after log2 n mistakes we will be left with the perfect expert.

Exercise 1: Argue that you cannot get an algorithm that makes fewer than log2 n mistakes in this
setting.

Suppose the best expert makes at most M mistakes on some sequence. Can we hope to make only
a few mistakes? Here’s a strategy that makes only (M + 1)(log2 n + 1) mistakes.1 Run the above
majority-and-halving strategy, but when you have discarded all the experts, bring them all back
(call this the beginning of a new “phase”), and continue. Note that in each phase each expert
makes at least one mistake, and you made log2 n+1 mistakes. Hence, if the best expert makes only
M mistakes, there would be at most M finished phases (plus the last unfinished one), and hence
at most (M + 1)(log2 n+ 1) mistakes in all.

Exercise 2: Suppose the predictions belonged to some set of K items. (E.g., you could say “cloudy”,
“sunny”, “rain”, “snow”.) Give algorithms showing the bound of O(M logn) mistakes still holds.

1Let’s assume n is a power of 2.
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3 The Weighted Majority/Multiplicative Weights Algorithm

Throwing away an expert when it makes a mistake seems too drastic. Suppose we instead assign
weights wj to the experts, sum the weights of the expert saying Up, sum the weights of the of
the expert saying Down, and predict the outcome with greater weight. (This is called the weighted
majority rule, since we are following the advice of the experts that form the weighted majority.)

Then once we see the outcome, we can reduce the weight of the experts who were wrong. In the
above algorithm, we were zeroing out the weight, but suppose we are gentler?

The (basic) deterministic weighted majority algorithm does the following:

Start with each expert having weight 1. Each time an expert makes a mistake, half its
weight. Output the prediction of the experts who form the weighted majority.

Remarkably, we can get a much stronger result now.

Theorem 1 If on some sequence of days, the best expert makes M mistakes. The basic determin-
istic weighted majority algorithm makes ≤ 2.41(M + log2 n) mistakes.

Proof: Let Φ :=
∑n

i=1wi be the sum of weights of the n experts. Note that initially Φ = n.
Moreover, we claim that each time we make a mistake

Φnew ≤
3

4
Φold.

Indeed, at least half the weight (which was making the majority prediction) gets halved (because
it made a mistake), so we lose at least a quarter of the weight with each mistake. (Also if we don’t
make a mistake, Φ does not increase.) So if we’ve made m mistakes at some point, the total weight
is at most

Φfinal ≤ (3/4)m · Φinit = (3/4)m · n.

Moreover, if the best expert i∗ has made M mistakes, then Φfinal ≥ wi∗ = (1/2)M . So

(1/2)M ≤ (3/4)m · n ⇒ (4/3)m ≤ n2M .

Taking logs (base 2) and noting that 1
log2(4/3)

= 2.41 . . . completes the proof. �

This is pretty cool! If the best expert makes mistakes 10% of the time we err about 24% of the
time (plus O(log n), but since this depends only on the number of experts, it will be a negligible
fraction as M � log n). We can improve the 2.41 factor down to as close to 2 as we want, as the
next exercise shows.

Exercise∗ 3: Show that if we reduce the weight not by 1/2 but by (1− ε) for some ε ≤ 1/2, then the
number of mistakes is at most 2(1+ ε)M +O( logn

ε
). (Hint: check out the approximations we use in the

proof of Theorem 2.)

However, you can show that no deterministic prediction algorithm can make fewer than 2M mis-
takes. How? Two experts: one says “Up” all the time, the other “Down” all the time. Fix any
prediction algorithm. Since this algorithm is deterministic, you (as the adversary) know what
prediction it will make on any day, if you know what happened on all previous days. So as the
adversary, you can now make the “real” outcome on this day be the opposite of the algorithm’s
prediction for this day. This means the algorithm makes a mistake on all days. But one of the
experts must be right on at least 50% of the days.
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4 Randomized Weighted Majority

Given the lower bound above for deterministic algorithms, randomization seems like a natural
source of help. (At least the example above would fail.) Let’s define the Randomized Weighted
Majority algorithm as follows:

Start with unit weights. At each time, predict Up with probability∑
j says Upwj∑

j wj
,

and Down otherwise. Whenever an expert makes a mistake, multiply its weight by (1−ε).

Note that the weights are pretty much like in the basic MW algorithm, just reduced more gently.
(Moreover, note that the prediction we make does not alter the weight reduction step.) A slightly
different, but equivalent view is the following:

Start with unit weights. At each time, pick a random expert, where expert i is picked
with probability wi∑

j wj
, and predict that picked expert’s prediction. And each time an

expert makes a mistake, multiply its weight by (1− ε).

The analysis very similar to Theorem 1, we just need to handle expectations.

Theorem 2 Let ε ≤ 1/2. If on some sequence of days, the best expert makes M mistakes. The
expected number of mistakes the randomized weighted majority algorithm makes is at most

(1 + ε)M +
lnn

ε
.

Proof: Again, let us look at the potential Φ =
∑

j wj , the total weight in the system. Having fixed
the outcome on all days, this potential varies deterministically.

Let Ft be the fraction of the total weight on the tth day that is on the experts who make a mistake
on that day. On day t our probability of making a mistake is Ft. Hence

• The expected number of mistakes we make is
∑

t Ft.

• On the tth day, Φnew = Φold · (1− εFt). The following handwritten figure proves this.
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So,

Φfinal = n ·
∏
t

(1− εFt) ≤ n · e−ε
∑
t Ft ,

where we used that (1 + x) ≤ ex for all x ∈ R.

Again, Φfinal ≥ (1− ε)M , so

(1− ε)M ≤ n · e−ε
∑
t Ft ⇒ ε

∑
t

Ft ≤M ln
1

(1− ε)
+ lnn.

We can now use that ln 1
(1−ε) = − ln(1− ε) ≤ ε+ ε2 for ε ∈ [0, 12 ] to get

the expected number of mistakes =
∑
t

Ft ≤M(1 + ε) +
lnn

ε
.

�

Pretty sweet, right? The number of mistakes we make is almost the same as the best expert, plus
this additive term that just depends on n and ε, but is independent of the input sequence. Since
the optimal number of mistakes M is at most T , the number of days, we can say

⇒ our # of errors ≤ optimal # of errors + εT +
lnn

ε
(1)

So dividing both sides by T , we get the error “rate” (i.e., errors per unit time):

⇒ our error rate ≤ optimal error rate + ε+
lnn

εT
(2)

And now setting ε =
√

lnn
T :

⇒ our error rate ≤ optimal error rate + 2

√
lnn

T
. (3)

This last term is called the “regret”. So as we do the prediction for longer and longer (i.e., T →∞),
our error rate gets as close as we want to the optimal error rate. (We have “vanishing regret”.)

5 Some Extensions (optional material)

Repeated Zero-Sum Game. The interpretation of choosing a random expert (according to the
probability distribution wi∑

j wj
) allows us to view the process as playing a two-player zero-sum game

repeatedly. Let the cost matrix contain only 0s and 1s. Each column is an expert. Each day the
adversary plays a row (which defines the costs for us), we play a column (which is like choosing an
expert). Theorem 2 says that we can play almost as best as the best column in hindsight.

Fractional Costs. Suppose each day t, instead of costs that are zero (no mistake) or one (mistake),
we have costs cti in [0, 1]. We can extend the result to that setting with a very slight change: update
the weight of an expert i by wi ← wi(1 − εcti). With small changes in the analysis, the guarantee
of Theorem 2 goes through unchanged! (Exercise: Show this!)
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5.1 A Proof of the Minimax Theorem (optional material)

Recall the minimax theorem: it says that in any zero-sum game (given by the row player’s payoff
matrix M), if we define the row player’s guaranteed payoff (which is a lower bound on what she’s
guaranteed to earn regardless of what the column player does):

VR = max
p

min
j

pTMej = max
p

min
q

pTMq

and the column player’s guaranteed payoff (which is an upper bound on what the row player can
earn, regardless of what she does):

VC = min
q

max
i
eTi Mq = min

q
max
p

pTMq,

then VC = VR. Clearly, VR ≤ VC . The tricky part is the other direction, which we now use the
experts theorem to prove.

Suppose not. There is some zero-sum game where VR = VC − δ for δ > 0, with a strict inequality.
Remember,

• If the column player commits to some strategy first, there is some row that the row player
can play to get payoff at least VC .

• On the other hand, if the row player commits first, then the column the column player can
play so that row player get at most VR = VC − δ.

By scaling the payoffs, imagine they are in [0, 1].

Now imagine we use Randomized Weighted Majority (RWM) to play the columns. Since the
distribution from which RWM draws is updated in a deterministic fashion, let the row player play
optimally against this distribution at each step.

• In T steps, RWM has cost at most that of the best column (expert) in hindsight +εT + lnn
ε .

• The best column in hindsight can ensure cost at most VR · T , since it’s like the row player
has played first.

• But at each time, the row player knows your strategy, so her expected payoff is at least VC ·T .

Putting these together

VC · T ≤ row player’s payoff ≤ VR · T + εT +
lnn

ε
,

or

δT ≤ εT +
lnn

ε
.

But we were free to choose ε and T as we want, so if we choose ε = δ/2 and T ≥ lnn
ε2

, then we get
a contradiction. Hence, there cannot be any gap δ, and VR = VC .
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