
15-451/651: Design & Analysis of Algorithms March 30, 2021
Lecture #15: Linear Programming III last changed: March 24, 2021

In this lecture we discuss the general notion of Linear Programming Duality, a powerful tool that
you should definitely master.

1 Linear Programming Duality

Consider the following LP

P = max(2x1 + 3x2)

s.t. 4x1 + 8x2 ≤ 12

2x1 + x2 ≤ 3

3x1 + 2x2 ≤ 4

x1, x2 ≥ 0

(1)

4x1 + 8x2 ≤ 12

2x1 + x2 ≤ 3

3x1 + 2x2 ≤ 4

max 2x1 + 3x2

In an attempt to solve P we can produce upper bounds on its optimal value.

• Since 2x1 + 3x2 ≤ 4x1 + 8x2 ≤ 12, we know OPT(P ) ≤ 12. (The first inequality uses that
2x1 ≤ 4x1 because x1 ≥ 0, and similarly 3x2 ≤ 8x2 because x2 ≥ 0.)

• Since 2x1 + 3x2 ≤ 1
2(4x1 + 8x2) ≤ 6, we know OPT(P ) ≤ 6.

• Since 2x1 + 3x2 ≤ 1
3((4x1 + 8x2) + (2x1 + x2)) ≤ 5, we know OPT(P ) ≤ 5.

In each of these cases we take a positive1 linear combination of the constraints, looking for better
and better bounds on the maximum possible value of 2x1 + 3x2.

1Why positive? If you multiply by a negative value, the sign of the inequality changes.
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How do we find the “best” lower bound that can be achieved as a linear combination of the
constraints? This is just another algorithmic problem, and we can systematically solve it, by
letting y1, y2, y3 be the (unknown) coefficients of our linear combination. Then we must have

4y1 + 2y2 + 3y2 ≥ 2

8y1 + y2 + 2y3 ≥ 3

y1, y2, y3 ≥ 0

(2)

and we seek min(12y1 + 3y2 + 4y3)

This too is an LP! We refer to this LP (2) as the “dual” and the original LP 1 as the “primal”.
We designed the dual to serve as a method of constructing an upper bound on the optimal value of
the primal, so if y is a feasible solution for the dual and x is a feasible solution for the primal, then
2x1 + 3x2 ≤ 12y1 + 3y2 + 4y3. If we can find two feasible solutions that make these equal, then we
know we have found the optimal values of these LP.

In this case the feasible solutions x1 = 1
2 , x2 = 5

4 and y1 = 5
16 , y2 = 0, y3 = 1

4 give the same value
4.75, which therefore must be the optimal value.

Exercise 1: The dual LP is a minimization LP, where the constraints are of the form lhsi ≥ rhsi. You
can try to give lower bounds on the optimal value of this LP by taking positive linear combinations of
these constraints. E.g., argue that

12y1 + 3y2 + 4y3 ≥ 4y1 + 2y2 + 3y2 ≥ 2

(since yi ≥ 0 for all i) and
12y1 + 3y2 + 4y3 ≥ 8y1 + y2 + 2y3 ≥ 3

and

12y1 + 3y2 + 4y3 ≥ 2

3
(4y1 + 2y2 + 3y2) + (8y1 + y2 + 2y3) ≥ 4

3
+ 3 = 4

1

3
.

Formulate the problem of finding the best lower bound obtained by linear combinations of the given
inequalities as an LP. Show that the resulting LP is the same as the primal LP 1.

Exercise 2: Consider the “primal” LP below on the left:

P = max(7x1 − x2 + 5x3)

s.t. x1 + x2 + 4x3 ≤ 8

3x1 − x2 + 2x3 ≤ 3

2x1 + 5x2 − x3 ≤ −7

x1, x2, x3 ≥ 0

D = min(8y1 + 3y2 − 7y3)

s.t. y1 + 3y2 + 2y3 ≥ 7

y1 − y2 + 5y3 ≥ −1

4y1 + 2y2 − y3 ≥ 5

y1, y2, y3 ≥ 0

Show that the problem of finding the best upper bound obtained using linear combinations of the
constraints can be written as the LP above on the right (the “dual” LP). Also, now formulate the
problem of finding a lower bound for the dual LP. Show this lower-bounding LP is just the primal (P).

Exercise 3: In the examples above, the maximization LPs had constraints of the form lhsi ≤ rhsi,
and the rhs were all scalars, so taking positive linear combinations gave us blah ≤ number, i.e., an
upper bound as we wanted. However, suppose the primal LP has some “nice” constraints lhsi ≤ rhsi
and others are “not nice” lhsi ≥ rhsi, e.g., like the left one below. Show that the dual has non-positive
variables for the non-nice constraints. For example,

P = max(7x1 − x2 + 5x3)

s.t. x1 + x2 + 4x3 ≤ 8

3x1 − x2 + 2x3 ≥ 3

x1, x2, x3 ≥ 0

D = min(8y1 + 3y2)

s.t. y1 + 3y2 ≥ 7

y1 − y2 ≥ −1

4y1 + 2y2 ≥ 5

y1 ≥ 0, y2 ≤ 0

Another way is to replace lhsi ≥ rhsi in P by the equivalent constraint (−lhsi) ≤ (−rhsi) and get to
an LP P ′ with only nice constraints. Show that the dual D′ for P ′ is equivalent to the dual D for P .
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1.1 The Method

Consider the examples/exercises above. In all of them, we started off with a “primal” maximization
LP:

maximize cTx (3)

subject to Ax ≤ b

x ≥ 0,

The constraint x ≥ 0 is just short-hand for saying that the x variables are constrained to be
non-negative.2 And to get the best lower bound we generated a “dual” minimization LP:

minimize rTy (4)

subject to Py ≥ q

y ≥ 0,

The important thing is: this matrix P , and vectors q, r are not just any vectors. Look carefully:
P = AT . q = c and r = b. The dual is in fact:

minimize yTb (5)

subject to yTA ≥ cT

y ≥ 0,

And if you take the dual of (5) to try to get the best lower bound on this LP, you’ll get (4). The
dual of the dual is the primal. The dual and the primal are best upper/lower bounds you can obtain
as linear combinations of the inputs.

The natural question is: maybe we can obtain better bounds if we combine the inequalities in more
complicated ways, not just using linear combinations. Or do we obtain optimal bounds using just
linear combinations? In fact, we get optimal bounds using just linear combinations, as the next
theorems show.

1.2 The Theorems

It is easy to show that the dual (5) provides an upper bound on the value of the primal (4):

Theorem 1 (Weak Duality) If x is a feasible solution to the primal LP (4) and y is a feasible
solution to the dual LP (5) then

cTx ≤ yTb.

Proof: This is just a sequence of trivial inequalities that follow from the LPs above:

cTx ≤ (yTA)x = yT (Ax) ≤ yT b.

�

The amazing (and deep) result here is to show that the dual actually gives a perfect upper bound
on the primal (assuming some mild conditions).

2We use the convention that vectors like c and x are column vectors. So cT is a row vector, and thus cTx is
the same as the inner product c · x =

∑
i cixi. We often use cTx and c · x interchangeably. Also, a ≤ b means

component-wise inequality, i.e., ai ≤ bi for all i.
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Theorem 2 (Strong Duality Theorem) Suppose the primal LP (4) is feasible (i.e., it has at
least one solution) and bounded (i.e., the optimal value is not ∞). Then the dual LP (5) is also
feasible and bounded. Moreover, if x∗ is the optimal primal solution, and y∗ is the optimal dual
solution, then

cTx∗ = (y∗)Tb.

In other words, the maximum of the primal equals the minimum of the dual.

Why is this useful? If I wanted to prove to you that x∗ was an optimal solution to the primal, I
could give you the solution y∗, and you could check that x∗ was feasible for the primal, y∗ feasible
for the dual, and they have equal objective function values.

This min-max relationship is like in the case of s-t flows: the maximum of the flow equals the
minimum of the cut. Or like in the case of zero-sum games: the payoff for the maxmin-optimum
strategy of the row player equals the (negative) of the payoff of the maxmin-optimal strategy of
the column player. Indeed, both these things are just special cases of strong duality!

We will not prove Theorem 2 in this course, though the proof is not difficult. But let’s give a
geometric intuition of why this is true in the next section.

1.3 The Geometric Intuition for Strong Duality

To give a geometric view of the strong duality theorem, consider an LP of the following form:

maximize cTx (6)

subject to Ax ≤ b

x ≥ 0

For concreteness, let’s take the following 2-dimensional LP:

maximize x2

subject to − x1 + 2x2 ≤ 3

x1 + x2 ≤ 2

−2x1 + x2 ≤ 4

x1, x2 ≥ 0

If c := (0, 1), then the objective function wants to maximize c · x, i.e., to go as far up in the
vertical direction as possible. As we have already argued before, the optimal point x∗ must be
obtained at the intersection of two constraints for this 2-dimensional problem (n tight constraints
for n dimensions). In this case, these happen to be the first two constraints.
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If a1 = (−1, 2), b1 = 3 and a2 = (1, 1), b2 = 2, then x∗ is the (unique) point x satisfying both
a1 · x = b1 and a2 · x = b2. Indeed, we’re being held down by these two constraints. Geometrically,
this means that c = (0, 1) lies “between” these the vectors a1 and a2 that are normal (perpendicular)
to these constraints.

Consequently, c can be written as a positive linear combination of a1 and a2. (It “lies in the cone
formed by a1 and a2.”) I.e., for some positive values y1 and y2,

c = y1a1 + y2a2.

Great. Now, take dot products on both sides with x∗. We get

c · x∗ = (y1 a1 + y2 a2) · x∗
= y1(a1 · x∗) + y2(a2 · x∗)
= y1b1 + y2b2

Defining y = (y1, y2, 0, . . . , 0), we get

optimal value of primal = c · x∗ = b · y ≥ value of dual solution y.

The last inequality follows because

• the y we found satisfies c = y1a1 + y2a2 =
∑

i yiai = ATy, and hence y satisfies the dual
constraints yTA ≥ cT by construction.

In other words, y is a feasible solution to the dual, has value b · y ≤ c · x∗. So the optimal dual
value cannot be less. Combined with weak duality (which says that c · x∗ ≤ b · y), we get strong
duality

c · x∗ = b · y.
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Above, we used that the optimal point was constrained by two of the inequalities (and that these
were not the non-negativity constraints). The general proof is similar: for n dimensions, we just
use that the optimal point is constrained by n tight inequalities, and hence c can be written as a
positive combination of n of the constraints (possibly some of the non-negativity constraints too).

2 Example #1: Zero-Sum Games

Consider a 2-player zero-sum game defined by an n-by-m payoff matrix R for the row player. That
is, if the row player plays row i and the column player plays column j then the row player gets
payoff Rij and the column player gets −Rij . To make this easier on ourselves (it will allow us to
simplify things a bit), let’s assume that all entries in R are positive (this is really without loss of
generality since as pre-processing one can always translate values by a constant and this will just
change the game’s value to the row player by that constant). We saw we could write this as an LP:

• Variables: v, p1, p2, . . . , pn.

• Maximize v,

• Subject to:

pi ≥ 0 for all rows i,∑
i pi = 1,∑
i piRij ≥ v, for all columns j.

To put this into the form of (4), we can replace
∑

i pi = 1 with
∑

i pi ≤ 1 since we said that all
entries in R are positive, so the maximum will occur with

∑
i pi = 1, and we can also safely add

in the constraint v ≥ 0. We can also rewrite the third set of constraints as v −∑
i piRij ≤ 0. This

then gives us an LP in the form of (4) with

x =

v
p1
p2
. . .
pn

, c =

1
0
0
. . .
0

,b =

0
0
. . .
0
1

, and A =

1
1 −RT

. . .
1

0 1 . . . 1

.

I.e., maximizing cTx subject to Ax ≤ b and x ≥ 0.

We can now write the dual, following (5). Let yT = (y1, y2, . . . , ym+1). We now are asking to
minimize yTb subject to yTA ≥ cT and y ≥ 0. In other words, we want to:

• Minimize ym+1,

• Subject to:

y1 + . . . + ym ≥ 1,

−y1Ri1 − y2Ri2 − . . .− ymRim + ym+1 ≥ 0 for all rows i,

or equivalently,

y1Ri1 + y2Ri2 + . . . + ymRim ≤ ym+1 for all rows i.
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So, we can interpret ym+1 as the value to the row player, and y1, . . . , ym as the randomized strategy
of the column player, and we want to find a randomized strategy for the column player that
minimizes ym+1 subject to the constraint that the row player gets at most ym+1 no matter what
row he plays. Now notice that we’ve only required y1 + . . . + ym ≥ 1, but since we’re minimizing
and the Rij ’s are positive, the minimum will happen at equality.

Notice that the fact that the maximum value of v in the primal is equal to the minimum value of
ym+1 in the dual follows from strong duality. Therefore, the minimax theorem is a corollary to the
strong duality theorem.

3 Example #2: Shortest Paths

Duality allows us to write problems in multiple ways, which often gives us power and flexibility.
For instance, let us see two ways of writing the shortest s-t path problem, and why they are equal.

Here is an LP for computing an s-t shortest path with respect to the edge lengths `(u, v) ≥ 0:

max dt (7)

subject to ds = 0

dv − du ≤ `(u, v) ∀(u, v) ∈ E

The constaints are the natural ones: the shortest distance from s to s is zero. And if the s-u
distance is du, the s-v distance is at most du + `(u, v) — i.e., dv ≤ du + `(u, v). It’s like putting
strings of length `(u, v) between u, v and then trying to send t as far from s as possible—the farthest
you can send t from s is when the shortest s-t path becomes tight.

Here is another LP that also computes the s-t shortest path:

min
∑

e `(e) ye (8)

subject to
∑

w:(s,w)∈E ysw = 1∑
v:(v,t)∈E yvt = 1∑
v:(u,v)∈E yuv =

∑
v:(v,w)∈E yvw ∀w ∈ V \ {s, t}

ye ≥ 0.

In this one we’re sending one unit of flow from s to t, where the cost of sending a unit of flow on an
edge equals its length `e. Naturally the cheapest way to send this flow is along a shortest s-t path
length. So both the LPs should compute the same value. Let’s see how this follows from duality.

3.1 Duals of Each Other

Take the first LP. Since we’re setting ds to zero, we could hard-wire this fact into the LP. So we
could rewrite (7) as

max dt (9)

subject to dv − du ≤ `(u, v) ∀(u, v) ∈ E, s 6∈ {u, v}
dv ≤ `(s, v) ∀(s, v) ∈ E

−du ≤ `(u, s) ∀(u, s) ∈ E

Moreover, the distances are never negative for `(u, v) ≥ 0, so we can add in the constraint dv ≥ 0
for all v ∈ V .
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How to find an upper bound on the value of this LP? The LP is in the standard form, so we can
do this mechanically. But let us do this from starting from the definition of the dual as the “best
upper bound”.

Let us define Eout
s := {(s, v) ∈ E}, Ein

s := {(u, s) ∈ E}, and Erest := E \ (Eout
s ∪ Ein

s ). For every
arc e = (u, v) we will have a variable ye ≥ 0. We want to get the best upper bound on dt by linear
combinations of the the constraints, so we should find a solution to∑

e∈Erest

yuv (dv − du) +
∑

e∈Eout
s

ysv dv −
∑

e∈Ein
s

yus du ≥ dt (10)

(this is like yTA ≥ c) and the objective function is to

minimize
∑

(u,v)∈E

yuv `(u, v). (11)

(This is like minyTb.) Great, the objective function (11) is exactly what we want, but what about
the craziness in (10)? Just collect all copies of each of the variables dv, and it now says

∑
v 6=s

dv

 ∑
u:(u,v)∈E

yuv −
∑

w:(v,w)∈E

yvw

 ≥ dt.

First, this must be an equality at optimality (since otherwise we could reduce the y values). More-
over, these equalities must hold regardless of the dv values, so this is really the same as∑

u:(u,v)∈E

yuv −
∑

w:(v,w)∈E

yvw = 0 ∀v 6∈ {s, t}. (12)

∑
u:(u,t)∈E

yut −
∑

w:(t,w)∈E

ytw = 1.

Summing all these inequalities for all nodes v ∈ V \ {s} gives us the missing equality:∑
w:(s,w)∈E

ysw −
∑

u:(u,s)∈E

yus = 1.

Finally, observe that since there’s flow conservation at all nodes, and the net unit flow leaving s
and reaching t, this means we must have a possibly-empty circulation (i.e., flow going around in
circles) plus one unit of s-t flow. Removing the circulation can only lower the objective function,
so at optimality we’re left with one unit of flow from s to t. This is precisely the LP (8), showing
that the dual of LP (7) is LP (8), after a small amount of algebra.
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