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Outline

• Another linear programming example – l1 regression

• Seidel’s 2-dimensional linear programming algorithm

• Ellipsoid algorithm, and continued discussion of simplex algorithm



L1 Regression

• Input: n x d matrix A with n larger than d, and n x 1 vector b
• Find x with Ax = b
• Unlikely an x exists, so instead compute  

,…,

• Solve with linear programming? How to handle the absolute values?
• Create variables for i = 1, …, n with 

• Also have variables 

• Add constraints and –( for i = 1, …, n
• What should the objective function be?
• min  

,…,



Seidel’s 2-Dimensional Algorithm

• Variables 
• Constraints 
• Maximize 
• Start by making sure the

program has bounded objective
function value



What if the LP is unbounded?

• Add constraints and for a large value M

• How large should M be? 

• Maximum, if it were bounded, occurs at the intersection of two constraints 
and 

a b    𝑥 =   c
e f     𝑥 d

• If a, b, e, f, c, d are specified with L bits, can show | specified with O(L) bits
• Can evaluate the objective function on each of the 4 corners of the box to find two 

constraints which give the maximum
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What Convexity Tells Us

• Maximizing a linear function over the feasible
region finds a tangent point

• What’s a super naïve time algorithm?

• Find the intersection of each pair of constraints, compute its objective 
function value, and make sure this point is feasible for all constraints

• What’s a less naïve time algorithm?



An Time Algorithm
• Order the constraints  
• Recursively find optimum point ∗ of 
• If ∗ , then ∗ is overall optimum
• Otherwise,  new optimum intersects the line ∗

• Need to solve a 1-dimensional problem



1-Dimensional Problem 

• Takes O(m) time to solve
• Note: new optimum might not be determined by one of the two

constraints determining the old optimum



An Time Algorithm
• Recursively find optimum point ∗ of 

• If ∗ , then ∗ is still optimal

• Otherwise,  new optimum intersects the line 

• Solve a 1-dimensional problem in O(m) time

• T(m) = T(m-1) + O(m) = time

• Can we get O(m) time?



Seidel’s O(m) Time Algorithm

• O
• Leave at the end

• Recursively find the optimum ∗ of 

• Case 1: If ∗ , then ∗ is overall optimum
• O(1) time

• Case 2: If ∗ , then we need to intersect the line   with
each other line and solve a 1-dimensional problem in O(m) time



Backwards Analysis

• Let ∗ be the optimum point of 

• What is the chance that ∗ ?
• Suppose the optimum of is the 

intersection of two constraints and 

• If we’ve seen these two constraints, then the 

new constraint can’t change the 
optimum. Otherwise, optimum would change

• Expected time for processing the last constraint
is at most (1-2/m) O(1) + (2/m) O(m) = O(1)



Backwards Analysis

• We process the randomly ordered constraints in reverse order:

• When processing the last constraint of: 

the expected amount of time is 
(1-2/(m-j+1)) O(1) + (2/(m-j+1)) O(m-j+1) = O(1)

• The expected total time to process m constraints is   , as desired!
• Formally, let T(m) be the expected time to process all m constraints

T(m) (1-2/m) O(1) + (2/m) + T(m-1)
= O(1) + T(m-1)
= O(m). Also add initial constant time for finding 



What if the LP is Infeasible?

• Let j be the largest index for which is 
infeasible. That is, , is feasible

• Since , is randomly ordered, we 
spend an expected O(m) time to process such constraints

• When processing we will find 
the constraints are infeasible in O(m) time 
when solving the 1-dimensional problem



What If More than 2 lines Intersect at a Point?

• 2 of the constraints “hold down” the optimum

• Additional constraints can only help you



Higher Dimensions?

• The probability that our optimum changes is now at most d/m 
instead of 2/m

• When we find a violated constraint, we need to find a new optimum

• New optimum inside this hyperplane
• Project each constraint into this hyperplane

• Solve a (d-1)-dimensional linear program on m-1 constraints to find optimum

• Time is ( )m



Ellipsoid Algorithm

Solves feasibility problem

Replace objective function with constraint, do binary search
Replace “minimize with 

Can handle exponential
number of constraints if 
there’s a separation oracle



Karmarkar’s Algorithm

• Works with feasible points but doesn’t go corner to corner
• Moves in interior of the feasible region – “interior point method”


