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Outline

• Another linear programming example – l1 regression

• Seidel’s 2-dimensional linear programming algorithm

• Ellipsoid algorithm, and continued discussion of simplex algorithm



L1 Regression

• Input: n x d matrix A with n larger than d, and n x 1 vector b
• Find x with Ax = b
• Unlikely an x exists, so instead compute 

୶

 
୧ୀଵ,…,୬ ୧ ୧

• Solve with linear programming? How to handle the absolute values?
• Create variables ୧ for i = 1, …, n with ୧

• Also have variables ଵ ୢ

• Add constraints ୧ ୧ ୧ and –( ୧ ୧ ୧ for i = 1, …, n
• What should the objective function be?
• min ୧

 
୧ୀଵ,…,୬



Seidel’s 2-Dimensional Algorithm

• Variables ଵ ଶ

• Constraints ଵ ଵ ୫ ୫

• Maximize 
• Start by making sure the

program has bounded objective
function value



What if the LP is unbounded?

• Add constraints ଵ and ଶ for a large value M

• How large should M be? 

• Maximum, if it were bounded, occurs at the intersection of two constraints ଵ

ଶ and ଵ ଶ

a b    𝑥ଵ =   c
e f     𝑥ଶ d

• If a, b, e, f, c, d are specified with L bits, can show ଵ ଶ| specified with O(L) bits
• Can evaluate the objective function on each of the 4 corners of the box to find two 

constraints ଵ ଶ which give the maximum

[ [[ [ [[



What Convexity Tells Us

• Maximizing a linear function over the feasible
region finds a tangent point

• What’s a super naïve ଷ time algorithm?

• Find the intersection of each pair of constraints, compute its objective 
function value, and make sure this point is feasible for all constraints

• What’s a less naïve ଶ time algorithm?



An Time Algorithm
• Order the constraints  ଵ ଵ ୫ ୫ ଵ ଶ

• Recursively find optimum point ∗ of ଶ ଶ ୫ ୫ ଵ ଶ

• If ଵ
∗

ଵ, then ∗ is overall optimum
• Otherwise,  new optimum intersects the line ଵ

∗
ଵ

• Need to solve a 1-dimensional problem



1-Dimensional Problem 

• Takes O(m) time to solve
• Note: new optimum might not be determined by one of the two

constraints determining the old optimum



An Time Algorithm
• Recursively find optimum point ∗ of ଶ ଶ ୫ ୫ ଵ ଶ

• If ଵ
∗

ଵ, then ∗ is still optimal

• Otherwise,  new optimum intersects the line ଵ ଵ

• Solve a 1-dimensional problem in O(m) time

• T(m) = T(m-1) + O(m) = ଶ time

• Can we get O(m) time?



Seidel’s O(m) Time Algorithm

• O ୧భ ୧భ ୧ౣ ୧ౣ ଵ ଶ
• Leave ଵ ଶ at the end

• Recursively find the optimum ∗ of ୧మ ୧మ ୧ౣ ୧ౣ ଵ ଶ

• Case 1: If ୧భ
∗

୧భ
, then ∗ is overall optimum

• O(1) time

• Case 2: If ୧భ
∗

୧భ
, then we need to intersect the line   ୧భ ୧భ

with
each other line ୧ౠ ୧ౠ

and solve a 1-dimensional problem in O(m) time



Backwards Analysis

• Let ∗ be the optimum point of ୧మ ୧మ ୧ౣ ୧ౣ ଵ ଶ

• What is the chance that ୧భ
∗

୧భ
?

• Suppose the optimum ᇱ of ୧భ ୧భ ୧ౣ ୧ౣ ଵ ଶ is the 
intersection of two constraints ୧ౠ ୧ౠ

and ୧ౠᇲ ୧ౠᇲ

• If we’ve seen these two constraints, then the 

new constraint ୧భ ୧భ
can’t change the 

optimum. Otherwise, optimum would change
• Expected time for processing the last constraint

is at most (1-2/m) O(1) + (2/m) O(m) = O(1)



Backwards Analysis

• We process the randomly ordered constraints in reverse order:

୧భ ୧భ ୧ౣ ୧ౣ ଵ ଶ

• When processing the last constraint of: 

୧ౠ ୧ౠ ୧ౣ ୧ౣ ଵ ଶ

the expected amount of time is 
(1-2/(m-j+1)) O(1) + (2/(m-j+1)) O(m-j+1) = O(1)

• The expected total time to process m constraints is  
୨ , as desired!

• Formally, let T(m) be the expected time to process all m constraints
T(m) (1-2/m) O(1) + (2/m) + T(m-1)

= O(1) + T(m-1)
= O(m). Also add initial constant time for finding ଵ ଶ



What if the LP is Infeasible?

• Let j be the largest index for which ୧ౠ ୧ౠ ୧ౣ ୧ౣ ଵ ଶ is 
infeasible. That is, ୧ౠశభ ୧ౠశభ ୧ౣ ୧ౣ, ଵ ଶ is feasible

• Since ୧ౠశభ ୧ౠశభ ୧ౣ ୧ౣ, ଵ ଶ is randomly ordered, we 
spend an expected O(m) time to process such constraints

• When processing ୧ౠ ୧ౠ
we will find 

the constraints are infeasible in O(m) time 
when solving the 1-dimensional problem



What If More than 2 lines Intersect at a Point?

• 2 of the constraints “hold down” the optimum

• Additional constraints can only help you



Higher Dimensions?

• The probability that our optimum changes is now at most d/m 
instead of 2/m

• When we find a violated constraint, we need to find a new optimum

• New optimum inside this hyperplane
• Project each constraint into this hyperplane

• Solve a (d-1)-dimensional linear program on m-1 constraints to find optimum

• Time is ୓(ୢ)m



Ellipsoid Algorithm

Solves feasibility problem

Replace objective function with constraint, do binary search
Replace “minimize ଵ ଶ with ଵ ଶ

Can handle exponential
number of constraints if 
there’s a separation oracle



Karmarkar’s Algorithm

• Works with feasible points but doesn’t go corner to corner
• Moves in interior of the feasible region – “interior point method”


