Linear
 Programming II

David Woodruff

Outline

- Another linear programming example - 11 regression
- Seidel's 2-dimensional linear programming algorithm
- Ellipsoid algorithm, and continued discussion of simplex algorithm

L1 Regression

- Input: $\mathrm{n} \times \mathrm{d}$ matrix A with n larger than d , and $\mathrm{n} \times 1$ vector b
- Find x with $A x=b$
- Unlikely an x exists, so instead compute $\min _{x} \sum_{i=1, \ldots, n}\left|A_{i} \cdot x-b_{i}\right|$
- Solve with linear programming? How to handle the absolute values?
- Create variables s_{i} for $i=1, \ldots, n$ with $s_{i} \geq 0$
- Also have variables $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{d}}$
- Add constraints $A_{i} \cdot x-b_{i} \leq s_{i}$ and $-\left(A_{i} \cdot x-b_{i}\right) \leq s_{i}$ for $i=1, \ldots, n$
- What should the objective function be?
- $\min \sum_{\mathrm{i}=1, \ldots, \mathrm{n}} \mathrm{s}_{\mathrm{i}}$

Seidel's 2-Dimensional Algorithm

- Variables $\mathrm{x}_{1}, \mathrm{x}_{2}$
- Constraints $\mathrm{a}_{1} \cdot \mathrm{x} \leq \mathrm{b}_{1}, \ldots, \mathrm{a}_{\mathrm{m}} \cdot \mathrm{x} \leq \mathrm{b}_{\mathrm{m}}$
- Maximize c $\cdot \mathrm{x}$
- Start by making sure the program has bounded objective function value

What if the LP is unbounded?

- Add constraints $-\mathrm{M} \leq \mathrm{x}_{1} \leq \mathrm{M}$ and $-\mathrm{M} \leq \mathrm{x}_{2} \leq \mathrm{M}$ for a large value M
- How large should M be?
- Maximum, if it were bounded, occurs at the intersection of two constraints $\mathrm{ax}_{1}+$ $\mathrm{bx}_{2}=\mathrm{c}$ and $\mathrm{ex}_{1}+\mathrm{fx}_{2}=\mathrm{d}$ $\left[\begin{array}{l}a \\ \mathrm{a} \\ \mathrm{ef}\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}c \\ d\end{array}\right]$
- If a, b, e, f, c, d are specified with L bits, can show $\left|x_{1}\right|,\left|x_{2}\right|$ specified with $O(L)$ bits
- Can evaluate the objective function on each of the 4 corners of the box to find two constraints $\mathrm{c}_{1}, \mathrm{c}_{2}$ which give the maximum

What Convexity Tells Us

- Maximizing a linear function over the feasible region finds a tangent point
- What's a super naïve $O\left(\mathrm{~m}^{3}\right)$ time algorithm?

- Find the intersection of each pair of constraints, compute its objective function value, and make sure this point is feasible for all constraints
- What's a less naïve $O\left(\mathrm{~m}^{2}\right)$ time algorithm?

An $\mathrm{O}\left(\mathrm{m}^{2}\right)$ Time Algorithm

- Order the constraints $\mathrm{a}_{1} \cdot \mathrm{x} \leq \mathrm{b}_{1}, \ldots, \mathrm{a}_{\mathrm{m}} \cdot \mathrm{x} \leq \mathrm{b}_{\mathrm{m}}, \mathrm{c}_{1}, \mathrm{c}_{2}$
- Recursively find optimum point x^{*} of $a_{2} \cdot x \leq b_{2}, \ldots, a_{m} \cdot x \leq b_{m}, c_{1}, c_{2}$
- If $a_{1} x^{*} \leq b_{1}$, then x^{*} is overall optimum
- Otherwise, new optimum intersects the line $a_{1} x^{*}=b_{1}$
- Need to solve a 1-dimensional problem

1-Dimensional Problem

- Takes O(m) time to solve
- Note: new optimum might not be determined by one of the two constraints determining the old optimum

An O(m ${ }^{2}$) Time Algorithm

- Recursively find optimum point x^{*} of $\mathrm{a}_{2} \cdot \mathrm{x} \leq \mathrm{b}_{2}, \ldots, \mathrm{a}_{\mathrm{m}} \cdot \mathrm{x} \leq \mathrm{b}_{\mathrm{m}}, \mathrm{c}_{1}, \mathrm{c}_{2}$
- If $\mathrm{a}_{1} \mathrm{x}^{*} \leq \mathrm{b}_{1}$, then x^{*} is still optimal
- Otherwise, new optimum intersects the line $\mathrm{a}_{1} \cdot \mathrm{x}=\mathrm{b}_{1}$
- Solve a 1-dimensional problem in $O(m)$ time
- $\mathrm{T}(\mathrm{m})=\mathrm{T}(\mathrm{m}-1)+\mathrm{O}(\mathrm{m})=\mathrm{O}\left(\mathrm{m}^{2}\right)$ time
- Can we get $\mathrm{O}(\mathrm{m})$ time?

Seidel's O(m) Time Algorithm

- Order constraints randomly: $\mathrm{a}_{\mathrm{i}_{1}} \cdot \mathrm{x} \leq \mathrm{b}_{\mathrm{i}_{1}}, \ldots, \mathrm{a}_{\mathrm{i}_{\mathrm{m}}} \cdot \mathrm{x} \leq \mathrm{b}_{\mathrm{i}_{\mathrm{m}}}, \mathrm{c}_{1}, \mathrm{c}_{2}$
- Leave c_{1}, c_{2} at the end
- Recursively find the optimum x^{*} of $\mathrm{a}_{\mathrm{i}_{2}} \cdot \mathrm{x} \leq \mathrm{b}_{\mathrm{i}_{2}}, \ldots, \mathrm{a}_{\mathrm{i}_{\mathrm{m}}} \cdot \mathrm{x} \leq \mathrm{b}_{\mathrm{i}_{\mathrm{m}}}, \mathrm{c}_{1}, \mathrm{c}_{2}$
- Case 1: If $a_{i_{1}} \cdot x^{*} \leq b_{i_{1}}$, then x^{*} is overall optimum
- O(1) time
- Case 2: If $a_{i_{1}} \cdot x^{*}>b_{i_{1}}$, then we need to intersect the line $a_{i_{1}} \cdot x=b_{i_{1}}$ with each other line $\mathrm{a}_{\mathrm{i}_{\mathrm{j}}} \cdot x=\mathrm{b}_{\mathrm{i}_{\mathrm{j}}}$ and solve a 1-dimensional problem in $\mathrm{O}(\mathrm{m})$ time

Backwards Analysis

- Let x^{*} be the optimum point of $\mathrm{a}_{\mathrm{i}_{2}} \cdot \mathrm{x} \leq \mathrm{b}_{\mathrm{i}_{2}}, \ldots, \mathrm{a}_{\mathrm{i}_{\mathrm{m}}} \cdot \mathrm{x} \leq \mathrm{b}_{\mathrm{i}_{\mathrm{m}}}, \mathrm{c}_{1}, \mathrm{c}_{2}$
- What is the chance that $a_{i_{1}} \cdot x^{*}>b_{i_{1}}$?
- Suppose the optimum x^{\prime} of $a_{i_{1}} \cdot x \leq b_{i_{1}}, \ldots, a_{i_{m}} \cdot x \leq b_{i_{m}}, c_{1}, c_{2}$ is the intersection of two constraints $\mathrm{a}_{\mathrm{i}_{\mathrm{j}}} \cdot x=\mathrm{b}_{\mathrm{i}_{\mathrm{j}}}$ and $\mathrm{a}_{\mathrm{i}_{\mathrm{j}}} \cdot x=\mathrm{b}_{\mathrm{i}_{\mathrm{j}}}$
- If we've seen these two constraints, then the new constraint $\mathrm{a}_{\mathrm{i}_{1}} \cdot \mathrm{x} \leq \mathrm{b}_{\mathrm{i}_{1}}$ can't change the optimum. Otherwise, optimum would change
- Expected time for processing the last constraint is at most $(1-2 / \mathrm{m}) \cdot \mathrm{O}(1)+(2 / \mathrm{m}) \cdot \mathrm{O}(\mathrm{m})=\mathrm{O}(1)$

Backwards Analysis

- We process the randomly ordered constraints in reverse order:

$$
a_{i_{1}} \cdot x \leq b_{i_{1}}, \ldots, a_{i_{m}} \cdot x \leq b_{i_{m}}, c_{1}, c_{2}
$$

- When processing the last constraint of:

$$
a_{i_{j}} \cdot x \leq b_{i_{j}}, \ldots, a_{i_{m}} \cdot x \leq b_{i_{m}}, c_{1}, c_{2}
$$

the expected amount of time is

$$
(1-2 /(m-j+1)) \cdot O(1)+(2 /(m-j+1)) \cdot O(m-j+1)=O(1)
$$

- The expected total time to process m constraints is $\sum_{j} \mathrm{O}(1)=\mathrm{O}(\mathrm{m})$, as desired!
- Formally, let $T(m)$ be the expected time to process all m constraints

$$
\begin{aligned}
\mathrm{T}(\mathrm{~m}) & \leq(1-2 / m) \mathrm{O}(1)+(2 / m) \cdot O(m)+T(m-1) \\
& =O(1)+T(m-1) \\
& =O(m) . \text { Also add initial constant time for finding } c_{1}, c_{2}
\end{aligned}
$$

What if the LP is Infeasible?

- Let j be the largest index for which $\mathrm{a}_{\mathrm{i}_{\mathrm{j}}} \cdot \mathrm{x} \leq \mathrm{b}_{\mathrm{i}_{\mathrm{j}}}, \ldots, \mathrm{a}_{\mathrm{i}_{\mathrm{m}}} \cdot \mathrm{x} \leq \mathrm{b}_{\mathrm{i}_{\mathrm{m}}}, \mathrm{c}_{1}, \mathrm{c}_{2}$ is infeasible. That is, $a_{i_{j+1}} \cdot x \leq b_{i_{j+1}}, \ldots, a_{i_{m}} \cdot x \leq b_{i_{m}}, c_{1}, c_{2}$ is feasible
- Since $a_{i_{j+1}} \cdot x \leq b_{i_{i_{+1}}}, \ldots, a_{i_{m}} \cdot x \leq b_{i_{i_{m}}}, c_{1}, c_{2}$ is randomly ordered, we spend an expected $\mathrm{O}(\mathrm{m})$ time to process such constraints
- When processing $a_{i_{j}} \cdot x \leq b_{i_{j}}$ we will find the constraints are infeasible in $O(m)$ time when solving the 1-dimensional problem

What If More than 2 lines Intersect at a Point?

- 2 of the constraints "hold down" the optimum
- Additional constraints can only help you

Higher Dimensions?

- The probability that our optimum changes is now at most d / m instead of $2 / m$
- When we find a violated constraint, we need to find a new optimum
- New optimum inside this hyperplane
- Project each constraint into this hyperplane
- Solve a (d-1)-dimensional linear program on $m-1$ constraints to find optimum
- Time is $\mathrm{d}^{\mathrm{O}(\mathrm{d})} \mathrm{m}$

Ellipsoid Algorithm

Solves feasibility problem
Replace objective function with constraint, do binary search Replace "minimize $\mathrm{x}_{1}+\mathrm{x}_{2}$ " with $\mathrm{x}_{1}+\mathrm{x}_{2} \leq \lambda$

Can handle exponential number of constraints if there's a separation oracle

Karmarkar's Algorithm

- Works with feasible points but doesn't go corner to corner
- Moves in interior of the feasible region - "interior point method"

