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Outline

 2-player zero-sum games and minimax optimal strategies
* Connection to randomized algorithms

* General sum games, Nash equilibria



Game Theory

* How people make decisions in social and economic interactions

* Applications to computer science

e Users interacting with each other in large systems

e Routing in large networks

* Auctions on Ebay



Definitions

* A game has

* Participants, called players
* Each player has a set of choices, called actions

 Combined actions of players leads to payoffs for each player



Shooter-Goalie Game

2 players: shooter and goalie
* Shooter has 2 actions: shoot to her left or shoot to her right

* Goalie has two actions: dive to shooter’s left or to shooter’s right
* |left and right are defined with respect to shooter’s actions

 Set of actions for both Shooter and Goalie is {L, R}
* |f shooter and goalie each choose L, or each choose R, then goalie makes a save

* |f shooter and goalie choose different actions, then the shooter makes a goal



Payoff Matrix

If goalie makes a save, goalie has payoff +1, shooter has payoff -1

If shooter makes a goal, goalie has payoff -1, shooter has payoff +1

payoff goalie
matrix M L R
shooter L || (—1,1) | (1,—-1)
R (1,-1) | (—1,1)

Payoff is (r,c), where r is payoff to row player, and c is payoff to the column player
For each entry (r,c), r+c = 0. This is called a zero-sum game

Zero-sum game does not imply “fairness”. If all entries are (1,-1) it is still zero-sum



An Aside

* Row-payoff matrix R consists of the payoffs to the row player

* Cis the column-payoff matrix
* Mi,j — (Ri,j’ Ci,j) foralli andj

payoff goalie
matrix M L R

" shooter L | (—1,1) | (1,-1)
R (1,-1) | (-1,1)

* R+ C =0 for zero-sum games

Row payolff goalie
matrix L R
shooter L || —1 1

R

1 —1




Pure and Mixed Strategies

* How should the players play?

* Pure strategy:
* Row player chooses a deterministic action |
* Column player chooses a deterministic action J
* Payoff is Ry for row player, and Cy; for column player

* Pure strategies are deterministic, what about randomized strategies?
* Players have a distribution over their actions
* Row player decides on a p; € [0,1] for each row, with )., tionsiPi = 1

* Column player decides on a q; € [0,1] for each column, with ), =1

actions j q;
* Distributions p and g are mixed strategies
How to define payoff for mixed strategies?



Expected Payoff

* Assume players have independent randomness
* Vr(p,q) = Zi’j Pr[row player plays i, column player plays j] - Rij = Zi’j Pig;jRi;
* Ve(p,q) = Zi’j Pr[row player plays i, column player plays j] - Cj; = Zi’j Piq;Ci;

* What is Vr(p, q) + Vc(p, q)?

* O, since zero-sum game

payoff goalie
matrix M L R
shooter L || (—1,1) | (1,-1)
R (1,-1) | (—1,1)

If p=(.5,.5)and g = (.5,

.5) what is Vg?

Ve =.25-(=1)+.25-1+ .25-1+ .25-(—=1)

If p=(.75,.25) and q = (.6, .4) what is VR?

VR

= —0.1



Minimax Optimal Strategies

* Row player wants a distribution p* maximizing her expected payoff
over all strategies g of her opponent

* p* achieves lower bound Ib = max min Vi (p, q)
P q

mixed strategy that maximizes the minimum expected payoff

" iy N
Ib := max min Vgr(p, q)
p q
payofl when opponent plays - optimal strategy against our choice p

* The row player can guarantee this expected payoff no matter what the
column player does. |b is a lower bound on the row-player’s payoff



Minimax Optimal Strategies

* Column player wants distribution @* maximizing his expected payoff over all
strategies p of his opponent

 q* achieving max min V:(p, q)
q bp

e Claim: max min V¢(p, q) = — min max Vg (p, q)
qa P q P
* Proof: max min V¢ (p, q) = max min —Vi(p, q)
qQ D q P
= max(— max Vg (p, q))
q p
= —min max Vr(p, q)
q p
Payoff to row player if column player plays g* is ub = min max Vi (p, q)
q p

Column player can guarantee the row player does not achieve a larger expected
payoff, so this is an upper bound ub on row player’s expected payoff



Lower and Upper Bounds

* Row player guarantees she has expected payoff at least

lb = max min Vi(p, q)
P 4

* Column player guarantees row player has expected payoff at most
ub = min max Vg (p, q)
q p

Ib < ub, but how close is Ib to ub?



A Pure Strategy Observation

* Suppose we want to find row player’s optimal strategy p*

* Claim: can assume column player plays a pure strategy. Why?

* For any strategy p of the row pIayer VR(p» q) 21] plq] ij Z q] (Z Pj 1])
* Column player can choose g to be the j for which ); p;R ij Is minimal

* b = max min VR (p, q) = max min };; p;R
P q P )

* ub = min max Vg(p, @) = min max;; q;R;;
q D a 1



payoff goalie
matrix M L I R

Shooter-Goalie Example | .

shooter L || (—1,1) | (1,-1)
R| (1,-1) | (=1,1)

Claim: minimax-optimal strategy for both players is (.5, .5)

Proof: For the shooter (row-player), let p = (p4, p») be the minimax optimal strategy
p1 = 0,p, = 0,and p; + p, = 1. Write p = (p, 1-p) with p in [0,1]
Suppose goalie (column-player) plays L

Shooter’s payoffisp- (—1) + (1 —p) - (1) =1 —2p (0,1) (1,1)
Suppose goalie plays R

Shooter’s payoffisp:- (1) + (1 —p) - (1) =2p—1
Choose p € [0,1] to maximize Ib = maxmin(1 — 2p,2p — 1) (0,-1) (1,-1)

p
p =% realizes this,and Ib =0

Similarly show optimal strategy q= (q, q,) of goalie is (1/2,1/2) and ub =0
ub =1b =0, which is the value of the game



Asymmetric Shooter-Goalie

shooter L || (—

R| (1,-

Goalie is now weaker on the left
Let p = (p1, p2) be the minimax optimal shooter (row-player) strategy
Suppose goalie (column player) plays L

Shooter’s payoffis p - (— %) +(1-p)-(1)=1- (g)p
Suppose goalie plays R
Shooter’s payoffisp- (1) + (1 —p) - (—1) =2p—1

Choose p € [0,1] to maximize Ib = maxmin(1 — (;) p, 2p—1)
p

Maximized when 1 — (g) p=2p—1,sop=4/7,andlb=1/7
What is the column player’s minimax strategy?



Asymmetric Shooter-Goalie shooter L || (-1,
R| (1,-

Let q = (q, 1 — q) be the minimax optimal goalie (column-player) strategy

Suppose shooter (row player) plays L

Goalie’s payoffis q - (%) +(1-q)(—1) = 32_q —

Suppose shooter plays R
Goalie’s payoffisq- (1) + (1 —q) - (1) =1 — 2q
Choose g € [0,1] to realize max min(%q —1, 1—-2q)
q

32_q — 1 =1-—2qimplies g =4/7, and expected payoff at least -1/7

Remember: this means row player’s ub at most 1/7
Uhh... Ib = ub again... Value of the game is 1/7



Another Example

* Suppose in a zero-sum game, Row player’s payoffs are: (0,2)
-1 -2
1 2 (0,1)
* What is row player’s minimax strategy? Why? (1/2,0)
» Suppose her distribution is (p, 1-p) P
* Expected payoff if column player plays first action is: (1,-1)
p-(-D+(1-p)-1=1-2p
* Expected payoff if column player plays second action is: (1,-2)
p-(=2)+(1—-p)-2=2—-4p
* These lines both have a negative slope
e Should playp =0
e Can show column player should always play first action and value of game is 1



Exercise 1: What if both players have somewhat different weaknesses? What if the payofls are:

(-1/2, 1/2) (3/4, -3/4)
% —1) (-3/2, 3/2)

Show that minimax-optimal strategics are p = (2/3,1/3),q = (3/5,2/5) and value of game is 0.

Exercise 2: FFor the game with payoffs:

(-1/2, 1/2) (3/4, -3/4)
$1; =1) (-2/3, 2/3)

Show that minimax-optimal strategies are p — -i,, %), q-— %, l,—f::) and value of game is %

Exercise 3: For the game with payoffs:

(-1/2, 1/2) 2 1)
§1y <1) (2/3, -2/3)

Show that minimax-optimal strategics arc p = (0,1),q = (0,1) and value of game is %



Von Neumann’s Minimax Theorem

* In each example,
* row player has a strategy p* guaranteeing a payoff of |b for her

* column player has a strategy q* guaranteeing row player’s payoff is at most ub
* |b =ubl!

* Von Neumann: Given a finite 2-player zero-sum game,
lb = max min Vg (p,q) = min maxVg(p,q) =ub
P q q p

Common value is the value of the game

* In a zero-sum game, the row and column players can tell their strategy to each
other and it doesn’t affect their expected performance!

* Don’t tell each other your randomness



Lower Bounds for Randomized Algorithms

* A randomized algorithm is a zero-sum game

* Create a row-payoff matrix R:
* Rows are possible inputs (for sorting, n!)
e Columns are possible deterministic algorithms (e.g. every algorithm for sorting)
* Rj; is cost of algorithm jon input i (e.g. number of comparisons)

* A deterministic algorithm with good worst-case guarantee is a column
with entries that are all small

* A randomized algorithm with good expected guarantee is a distribution
g on columns so the expected cost in each row is small



Lower Bounds for Randomized Algorithms

* Minimax-optimal strategy for column player is best randomized algorithm

* A lower bound for a randomized algorithm is a distribution p on inputs so for every
algorithm j, expected cost of running j on input distribution p is large

. max min Ve(p,i) = min max Vi (],
input deterministic R(p ]) randomized inputsi R( q)
distributions p algorithmsj algorithms q
e showlb = max min Ve (p,]) is large
input deterministic R(p ]) 8

distributions p algorithmsj

e give strategy for the row player (distribution on inputs) such that every column
deterministic algorithm) has high cost



Lower Bounds for Randomized Sorting

* Theorem: Let A be a randomized comparison-based sorting algorithm. There’s
an input on which A makes an expected {)(lIgn!) comparisons

* Proof: consider uniform distribution on n! permutations of n distinct numbers

* n! leaves .

. (aya))
* No two inputs go to same leaf AT N
* How many leaves at depth Ig(n!) -10? @
e < 14244+, +20gn)-1 L 4 Nﬂ >

= = 512 (23) @) L
e 511/512 > .99 fraction of inputs are at (—% <
(1,3,2) | (3,1,2)

depth > Ig(n!)-10
* Expected depth > .99(1g(n!) — 10) = Q(Ign!)



General-Sum Two-Player Games

 Many games are not zero-sum, have “win-win” or “lose-lose” payoffs

e Game of “chicken”
» Suppose two drivers facing each other each drive on their left (L) or right (R)

payoff Bob
matrix M L R
Alice L || (1,1) | (—1,-1)
R ‘ (-1,-1) (1,1)

* What is a good notion of optimality to look at?



Nash Equilibria

* (p, q) is stable if no player has incentive to individually switch strategy
* For any other strategy p’ of row player,
row player’s new payoff = }; pigiRi;j < 2.i,j PigjR;; = row player’s old payoff
* For any other strategy q' of column player,
column player’s new payoff = Zi’j jof q]-’Ci,]- < Zi’j pig;Cij = column player’s old payoff

* For chicken, ((1,0),(1,0)) and ((0,1),(0,1)) and ((1/2,1/2),(1/2,1/2)) are Nash Equilibria

* Theorem (Nash): Every finite player game (with a finite number of strategies) has a Nash
equilibrium



