Game Theory and Lower Bounds for Randomized Algorithms

David Woodruff

Outline

- 2-player zero-sum games and minimax optimal strategies
- Connection to randomized algorithms
- General sum games, Nash equilibria

Game Theory

- How people make decisions in social and economic interactions
- Applications to computer science
- Users interacting with each other in large systems
- Routing in large networks
- Auctions on Ebay

Definitions

- A game has
- Participants, called players
- Each player has a set of choices, called actions
- Combined actions of players leads to payoffs for each player

Shooter-Goalie Game

- 2 players: shooter and goalie
- Shooter has 2 actions: shoot to her left or shoot to her right
- Goalie has two actions: dive to shooter's left or to shooter's right
- left and right are defined with respect to shooter's actions
- Set of actions for both Shooter and Goalie is $\{L, R\}$
- If shooter and goalie each choose L, or each choose R, then goalie makes a save
- If shooter and goalie choose different actions, then the shooter makes a goal

Payoff Matrix

- If goalie makes a save, goalie has payoff +1 , shooter has payoff -1
- If shooter makes a goal, goalie has payoff -1 , shooter has payoff +1

payoff	goalie	
matrix M	L	R
shooter L	$(-1,1)$	$(1,-1)$
R	$(1,-1)$	$(-1,1)$

- Payoff is (r, c), where r is payoff to row player, and c is payoff to the column player
- For each entry (r, c), $r+c=0$. This is called a zero-sum game
- Zero-sum game does not imply "fairness". If all entries are $(1,-1)$ it is still zero-sum

An Aside

- Row-payoff matrix R consists of the payoffs to the row player
- C is the column-payoff matrix
- $M_{i, j}=\left(R_{i, j}, C_{i, j}\right)$ for all i and j

payoff	goalie	
matrix M	L	R
shooter L	$(-1,1)$	$(1,-1)$
R	$(1,-1)$	$(-1,1)$

Row payoff matrix	goalie	
m	R	
shooter L	-1	1
R	1	-1

- $\mathrm{R}+\mathrm{C}=0$ for zero-sum games

Pure and Mixed Strategies

- How should the players play?
- Pure strategy:
- Row player chooses a deterministic action I
- Column player chooses a deterministic action J
- Payoff is $\mathrm{R}_{\mathrm{I}, \mathrm{J}}$ for row player, and $\mathrm{C}_{\mathrm{I}, \mathrm{J}}$ for column player
- Pure strategies are deterministic, what about randomized strategies?
- Players have a distribution over their actions
- Row player decides on a $p_{i} \in[0,1]$ for each row, with $\sum_{\text {actions i }} p_{i}=1$
- Column player decides on a $q_{j} \in[0,1]$ for each column, with $\sum_{\text {actions } j} q_{j}=1$
- Distributions p and q are mixed strategies

How to define payoff for mixed strategies?

Expected Payoff

- Assume players have independent randomness
- $\mathrm{V}_{\mathrm{R}}(\mathrm{p}, \mathrm{q})=\sum_{\mathrm{i}, \mathrm{j}} \operatorname{Pr}[$ row player plays i , column player plays j$] \cdot \mathrm{R}_{\mathrm{i}, \mathrm{j}}=\sum_{\mathrm{i}, \mathrm{j}} \mathrm{p}_{\mathrm{i}} \mathrm{q}_{\mathrm{j}} \mathrm{R}_{\mathrm{i}, \mathrm{j}}$
- $V_{C}(p, q)=\sum_{i, j} \operatorname{Pr}[$ row player plays i, column player plays $j] \cdot C_{i, j}=\sum_{i, j} p_{i} q_{j} C_{i, j}$
- What is $V_{R}(p, q)+V_{C}(p, q)$?
- 0 , since zero-sum game

payoff	goalie	
matrix M	L	R
shooter L	$(-1,1)$	$(1,-1)$
R	$(1,-1)$	$(-1,1)$

$$
\begin{aligned}
& \text { If } p=(.5, .5) \text { and } q=(.5, .5) \text { what is } V_{R} ? \\
& V_{R}=.25 \cdot(-1)+.25 \cdot 1+.25 \cdot 1+.25 \cdot(-1) \\
& \text { If } p=(.75, .25) \text { and } q=(.6, .4) \text { what is } V_{R} ? \\
& V_{R}=-0.1
\end{aligned}
$$

Minimax Optimal Strategies

- Row player wants a distribution p^{*} maximizing her expected payoff over all strategies q of her opponent
- p^{*} achieves lower bound $\mathrm{Ib}=\max \min \mathrm{V}_{\mathrm{R}}(\mathrm{p}, \mathrm{q})$
p q

- The row player can guarantee this expected payoff no matter what the column player does. lb is a lower bound on the row-player's payoff

Minimax Optimal Strategies

- Column player wants distribution q^{*} maximizing his expected payoff over all strategies p of his opponent
- q^{*} achieving $\max _{\mathrm{q}} \min _{\mathrm{p}} \mathrm{V}_{\mathrm{C}}(\mathrm{p}, \mathrm{q})$
- Claim: $\max _{q} \min _{\mathrm{p}} \mathrm{V}_{\mathrm{C}}(\mathrm{p}, \mathrm{q})=-\min _{\mathrm{q}} \max _{\mathrm{p}} \mathrm{V}_{\mathrm{R}}(\mathrm{p}, \mathrm{q})$
- Proof: $\max _{\mathrm{q}} \min _{\mathrm{p}} \mathrm{V}_{\mathrm{C}}(\mathrm{p}, \mathrm{q})=\max _{\mathrm{q}} \min _{\mathrm{p}}-\mathrm{V}_{\mathrm{R}}(\mathrm{p}, \mathrm{q})$

$$
\begin{aligned}
& =\max _{\mathrm{q}}\left(-\max _{\mathrm{p}} V_{\mathrm{R}}(\mathrm{p}, \mathrm{q})\right) \\
& =-\min _{\mathrm{q}} \max _{\mathrm{p}} V_{\mathrm{R}}(\mathrm{p}, \mathrm{q})
\end{aligned}
$$

Payoff to row player if column player plays q^{*} is $u b=\min _{q} \max _{p} V_{R}(p, q)$
Column player can guarantee the row player does not achieve a larger expected payoff, so this is an upper bound ub on row player's expected payoff

Lower and Upper Bounds

- Row player guarantees she has expected payoff at least

$$
\mathrm{lb}=\max _{\mathrm{p}} \min _{\mathrm{q}} \mathrm{~V}_{\mathrm{R}}(\mathrm{p}, \mathrm{q})
$$

- Column player guarantees row player has expected payoff at most $\mathrm{ub}=\min _{\mathrm{q}} \max _{\mathrm{p}} \mathrm{V}_{\mathrm{R}}(\mathrm{p}, \mathrm{q})$

$$
I b \leq u b, \text { but how close is Ib to } u b ?
$$

A Pure Strategy Observation

- Suppose we want to find row player's optimal strategy p^{*}
- Claim: can assume column player plays a pure strategy. Why?
- For any strategy p of the row player, $V_{R}(p, q)=\sum_{i, j} p_{i} q_{j} R_{i, j}=\sum_{j} q_{j} \cdot\left(\sum_{i} p_{i} R_{i, j}\right)$
- Column player can choose q to be the j for which $\sum_{i} p_{i} R_{i, j}$ is minimal
- $\mathrm{lb}=\max _{\mathrm{p}} \min _{\mathrm{q}} V_{\mathrm{R}}(\mathrm{p}, \mathrm{q})=\max _{\mathrm{p}} \min _{\mathrm{j}} \sum_{\mathrm{i}} \mathrm{p}_{\mathrm{i}} \mathrm{R}_{\mathrm{i}, \mathrm{j}}$
- ub $=\min _{\mathrm{q}} \max _{\mathrm{p}} \mathrm{V}_{\mathrm{R}}(\mathrm{p}, \mathrm{q})=\min _{\mathrm{q}} \max _{\mathrm{i}} \sum_{\mathrm{j}} \mathrm{q}_{\mathrm{j}} \mathrm{R}_{\mathrm{i}, \mathrm{j}}$

Shooter-Goalie Example

payoff	goalie	
matrix M	L	R
shooter L	$(-1,1)$	$(1,-1)$
R	$(1,-1)$	$(-1,1)$

Claim: minimax-optimal strategy for both players is (.5, .5)
Proof: For the shooter (row-player), let $\mathbf{p}=\left(p_{1}, p_{2}\right)$ be the minimax optimal strategy
$p_{1} \geq 0, p_{2} \geq 0$, and $p_{1}+p_{2}=1$. Write $p=(p, 1-p)$ with p in $[0,1]$
Suppose goalie (column-player) plays L
Shooter's payoff is $p \cdot(-1)+(1-p) \cdot(1)=1-2 p$
Suppose goalie plays R
Shooter's payoff is $p \cdot(1)+(1-p) \cdot(-1)=2 p-1$
Choose $p \in[0,1]$ to maximize $\mathrm{lb}=\max _{\mathrm{p}} \min (1-2 \mathrm{p}, 2 \mathrm{p}-1)$

$$
p=1 / 2 \text { realizes this, and } \mathrm{lb}=0
$$

Similarly show optimal strategy $\mathbf{q}=\left(\mathrm{q}_{1}, \mathrm{q}_{2}\right)$ of goalie is $(1 / 2,1 / 2)$ and $u b=0$ $\mathrm{ub}=\mathrm{lb}=0$, which is the value of the game

Asymmetric Shooter-Goalie

	L	R
shooter L	$\left(-\frac{1}{2}, \frac{1}{2}\right)$	$(1,-1)$
R	$(1,-1)$	$(-1,1)$

Goalie is now weaker on the left
Let $\mathbf{p}=\left(\mathrm{p}_{1}, \mathrm{p}_{2}\right)$ be the minimax optimal shooter (row-player) strategy Suppose goalie (column player) plays L

Shooter's payoff is $p \cdot\left(-\frac{1}{2}\right)+(1-p) \cdot(1)=1-\left(\frac{3}{2}\right) p$
Suppose goalie plays R
Shooter's payoff is $p \cdot(1)+(1-p) \cdot(-1)=2 p-1$
Choose $p \in[0,1]$ to maximize $\mathrm{lb}=\max _{\mathrm{p}} \min \left(1-\left(\frac{3}{2}\right) \mathrm{p}, 2 \mathrm{p}-1\right)$
Maximized when $1-\left(\frac{3}{2}\right) p=2 p-1$, so $p=4 / 7$, and $\mathrm{lb}=1 / 7$
What is the column player's minimax strategy?

Asymmetric Shooter-Goalie

	L	R
shooter L	$\left(-\frac{1}{2}, \frac{1}{2}\right)$	$(1,-1)$
R	$(1,-1)$	$(-1,1)$

Let $\mathbf{q}=(q, 1-q)$ be the minimax optimal goalie (column-player) strategy Suppose shooter (row player) plays L

Goalie's payoff is $q \cdot\left(\frac{1}{2}\right)+(1-q) \cdot(-1)=\frac{3 q}{2}-1$
Suppose shooter plays R
Goalie's payoff is $q \cdot(-1)+(1-q) \cdot(1)=1-2 q$
Choose $\mathrm{q} \in[0,1]$ to realize $\max _{\mathrm{q}} \min \left(\frac{3 \mathrm{q}}{2}-1,1-2 q\right)$
$\frac{3 q}{2}-1=1-2 q$ implies $q=4 / 7$, and expected payoff at least $-1 / 7$
Remember: this means row player's ub at most $1 / 7$
Uhh... lb = ub again... Value of the game is $1 / 7$

Another Example

- Suppose in a zero-sum game, Row player's payoffs are:
-1 -2
12
- What is row player's minimax strategy? Why?
- Suppose her distribution is (p, 1-p)
- Expected payoff if column player plays first action is:
$p \cdot(-1)+(1-p) \cdot 1=1-2 p$
- Expected payoff if column player plays second action is:

$p \cdot(-2)+(1-p) \cdot 2=2-4 p$
- These lines both have a negative slope
- Should play $p=0$
- Can show column player should always play first action and value of game is 1

Exercise 1: What if both players have somewhat different weaknesses? What if the payoffs are:

$$
\begin{array}{ll}
(-1 / 2,1 / 2) & (3 / 4,-3 / 4) \\
(1,-1) & (-3 / 2,3 / 2)
\end{array}
$$

Show that minimax-optimal strategies are $\mathbf{p}=(2 / 3,1 / 3), \mathbf{q}=(3 / 5,2 / 5)$ and value of game is 0 .
Exercise 2: For the game with payoffs:

$$
\begin{array}{ll}
(-1 / 2,1 / 2) & (3 / 4,-3 / 4) \\
(1,-1) & (-2 / 3,2 / 3)
\end{array}
$$

Show that minimax-optimal strategies are $\mathbf{p}=\left(\frac{4}{7}, \frac{3}{7}\right), \mathbf{q}=\left(\frac{17}{35}, \frac{18}{35}\right)$ and value of game is $\frac{1}{7}$.
Exercise 3: For the game with payoffs:

$$
\begin{array}{ll}
(-1 / 2,1 / 2) & (-1,1) \\
(1,-1) & (2 / 3,-2 / 3)
\end{array}
$$

Show that minimax-optimal strategies are $\mathbf{p}=(0,1), \mathbf{q}=(0,1)$ and value of game is $\frac{2}{3}$.

Von Neumann's Minimax Theorem

- In each example,
- row player has a strategy p^{*} guaranteeing a payoff of lb for her
- column player has a strategy q^{*} guaranteeing row player's payoff is at most ub
- $\mathrm{lb}=\mathrm{ub}$!
- Von Neumann: Given a finite 2-player zero-sum game,

$$
\mathrm{Ib}=\max _{\mathrm{p}} \min _{\mathrm{q}} \mathrm{~V}_{\mathrm{R}}(\mathrm{p}, \mathrm{q})=\min _{\mathrm{q}} \max _{\mathrm{p}} \mathrm{~V}_{\mathrm{R}}(\mathrm{p}, \mathrm{q})=\mathrm{ub}
$$

Common value is the value of the game

- In a zero-sum game, the row and column players can tell their strategy to each other and it doesn't affect their expected performance!
- Don't tell each other your randomness

Lower Bounds for Randomized Algorithms

- A randomized algorithm is a zero-sum game
- Create a row-payoff matrix R:
- Rows are possible inputs (for sorting, n !)
- Columns are possible deterministic algorithms (e.g. every algorithm for sorting)
- $R_{i, j}$ is cost of algorithm j on input i (e.g. number of comparisons)
- A deterministic algorithm with good worst-case guarantee is a column with entries that are all small
- A randomized algorithm with good expected guarantee is a distribution q on columns so the expected cost in each row is small

Lower Bounds for Randomized Algorithms

- Minimax-optimal strategy for column player is best randomized algorithm
- A lower bound for a randomized algorithm is a distribution \mathbf{p} on inputs so for every algorithm j , expected cost of running j on input distribution \mathbf{p} is large
- $\max _{\substack{\text { input } \\ \text { distributionsp algorithms } j}}^{\min _{\substack{\text { deteristic }}} V_{R}(p, j)=\min _{\substack{\text { randomized } \\ \text { algorithms } q}}^{\max _{\text {inputs } i}} V_{R}(i, q)}$
- show $\mathrm{lb}=\max _{\text {input }} \min _{\text {deterministic }} \mathrm{V}_{\mathrm{R}}(\mathrm{p}, \mathrm{j})$ is large distributions p algorithms j
- give strategy for the row player (distribution on inputs) such that every column (deterministic algorithm) has high cost

Lower Bounds for Randomized Sorting

- Theorem: Let A be a randomized comparison-based sorting algorithm. There's an input on which A makes an expected $\Omega(\lg n!)$ comparisons
- Proof: consider uniform distribution on n ! permutations of n distinct numbers
- n ! leaves
- No two inputs go to same leaf
- How many leaves at depth $\lg (\mathrm{n}!)-10$?
$\cdot \leq 1+2+4+\ldots+2^{(\lg \mathrm{n}!)-1} \leq \frac{\mathrm{n}!}{512}$
- 511/512 > . 99 fraction of inputs are at depth $>\lg (\mathrm{n}!)-10$

- Expected depth $>.99(\lg (\mathrm{n}!)-10)=\Omega(\lg n!)$

General-Sum Two-Player Games

- Many games are not zero-sum, have "win-win" or "lose-lose" payoffs
- Game of "chicken"
- Suppose two drivers facing each other each drive on their left (L) or right (R)

payoff	Bob	
matrix M	L	R
Alice L	$(1,1)$	$(-1,-1)$
R	$(-1,-1)$	$(1,1)$

-What is a good notion of optimality to look at?

Nash Equilibria

- (\mathbf{p}, \mathbf{q}) is stable if no player has incentive to individually switch strategy
- For any other strategy \mathbf{p}^{\prime} of row player, row player's new payoff $=\sum_{i, j} p_{i}^{\prime} q_{j} R_{i, j} \leq \sum_{i, j} p_{i} q_{j} R_{i, j}=$ row player's old payoff
- For any other strategy \mathbf{q}^{\prime} of column player, column player's new payoff $=\sum_{i, j} p_{i} q_{j}{ }^{\prime} C_{i, j} \leq \sum_{i, j} p_{i} q_{j} C_{i, j}=$ column player's old payoff
- For chicken, ((1,0),(1,0)) and ((0,1),(0,1)) and ((1/2,1/2),(1/2,1/2)) are Nash Equilibria
- Theorem (Nash): Every finite player game (with a finite number of strategies) has a Nash equilibrium

