
15-451/651: Design & Analysis of Algorithms September 7, 2021
Lecture #3: Amortized Analysis last changed: September 1, 2021

1 Introduction

In this lecture we discuss a useful form of analysis, called amortized analysis, for problems in which
one must perform a series of operations, and our goal is to analyze the time per operation. The
motivation for amortized analysis is that looking at the worst-case time per operation can be too
pessimistic if the only way to produce an expensive operation is to “set it up” with a large number
of cheap operations beforehand.

We also discuss the use of a potential function which can be a useful aid to performing this type
of analysis. A potential function is much like a bank account: if we can take our cheap operations
(those whose cost is less than our bound) and put our savings from them in a bank account, use our
savings to pay for expensive operations (those whose cost is greater than our bound), and somehow
guarantee that our account will never go negative, then we will have proven an amortized bound
for our procedure.

As in the previous lecture, in this lecture we will avoid use of asymptotic notation as much as
possible, and focus instead on concrete cost models and bounds.

Informally amortized cost of an operation in a sequence of operations is the total cost of all of them
divided by the number of operations (i.e. the average cost of an operation). We begin by presenting
two examples: the binary counter, and growing a table. In these examples the operations have large
worst-case cost, but constant amortized cost. We then introduce potential functions and show how
these same two examples can be analyzed using potentials. Finally we will apply the potential
function method to analyze the problem of a table that both grows and shrinks.

2 First Example: A Binary Counter

Imagine we want to store a big binary counter in an array A. All the entries start at 0 and at
each step we will be simply incrementing the counter. Let’s say our cost model is: whenever we
increment the counter, we pay 1 for every bit we need to flip. (So, think of the counter as an array
of heavy stone tablets, each with a “0” on one side and a “1” on the other.) For instance, here is
a trace of the first few operations and their cost:

A[m] A[m-1] ... A[3] A[2] A[1] A[0] cost
0 0 ... 0 0 0 0

1

0 0 ... 0 0 0 1

2

0 0 ... 0 0 1 0

1

0 0 ... 0 0 1 1

3

0 0 ... 0 1 0 0

1

0 0 ... 0 1 0 1

2

In a sequence of n increments, the worst-case cost per increment is O(log n), since at worst we flip

1

lg(n) + 1 bits. But, what is our amortized cost per increment? The answer is it is at most 2. Here
is a proof:

Proof: How often do we flip A[0]? Answer: every time. How often do we flip A[1]? Answer:
every other time. How often do we flip A[2]? Answer: every 4th time, and so on. So, the total
cost spent on flipping A[0] is n, the total cost spent flipping A[1] is at most n/2, the total cost
flipping A[2] is at most n/4, etc. Summing these up, the total cost spent flipping all the positions
in our n increments is at most 2n. So if we distribute this cost evenly over all n operations we see
that the average cost is at most 2 per operation.

3 Second Example: Growing a Table

A common problem in data structure design arises if you’re using an array (which we’ll call a table)
to store something (a stack, a hash table, a vector in C++, etc.), and you find out that you need
more space. The rule of thumb in these cases is to double the size of the table. This is expensive
because you have to allocate a lot of space, and move all the data over to the new area. Despite
this, we’ll see that the amortized cost is O(1).

We can set up a framework for analyzing this problem as follows. At any point in time the size
of the table is denoted by n, and the number of elements used in the table is denoted by s, with
s ≤ n. The following API defines the way the client will use the table.

initialize(): create a new table of size 1 with nothing in it. (n = 1 and s = 0)

insert(): add a new element to the table. (increment s)

It will be useful to define the following operation:

grow(): Double the size of the table from n to 2n. The cost of this operation is 2n, the new
size of the table.1 (This cost pays for allocating the new table and moving all of the
data from the old table to the new one.)

Now insert() will be implemented as follows:

insert(): If s = n then grow(). Now put the new element into the table at a cost of 1.
(increment s)

After an initialize(), what is the cost of a sequence of m inserts into the table? Let’s let
N denote the size of the table at the end of this process. The total work of all the insert()

operations, not counting the grow() costs is m. The total work of all the grow() operations is
2 + 4 + 8 + · · ·+N < 2N . But N/2 < m, because otherwise the table would never have grown to
size N . So the total cost is at most m + 4m = 5m. So we can say that the amortized cost of an
operation is at most 5.

4 Potentials

So far so good, but we’re going to need a better way to keep track of things for more complex
problems. And the way to do that is with potential functions, as we show in this section. But
first, here’s what you might call the Banker’s Proof of the amortized bound of 2 on the cost of
incrementing a binary number.

1These costs, and the ones that follow in the rest of these notes, are specified here for concreteness and clarity of
analysis. All of this is somewhat arbitrary. Changes in cost by a constant factor will only effect the final result by a
constant factor.

2

Banker’s Proof of Binary Counter: Every time you flip 0→ 1, pay the actual cost of $1, plus
put $1 into a piggy bank. So the total amount spent is $2. In fact, think of each bit as having its
own bank, so when you turn the stone tablet from 0 to 1, you put a $1 coin on top of it. Now,
every time you flip a 1 → 0, use the money in the bank (or on top of the tablet) to pay for the
flip. Clearly, by design, our bank account cannot go negative. The key point now is that even
though different increments can have different numbers of 1→ 0 flips, each increment has exactly
one 0→ 1 flip. So, we just pay $2 (amortized) per increment.

Banker’s proofs, like this one, involve placing the money at a specific location in the data structure.
So when a change occurs at that location, there is money right there to use to pay for the work.

Equivalently, what we are doing in this proof is using a “potential function” that equals the number
of 1-bits in the current count. Notice how the bank-account/potential-function allows us to smooth
out our payments, making the cost easier to analyze.

This technique can be applied in a much more general way. The idea is to make a rule that says
how much money must be kept in the bank as a function of the state of the data structure. Then
a bound is obtained on how much money is required to pay for an operation and maintain the
appropriate amount of money in the bank.

The physicist’s view of amortization uses different terminology to describe the same idea. A po-
tential function Φ(s) is a mapping from data-structure states to the reals. This takes the place of
the bank account in the banker’s view. Both methods are useful, and will be used in this course.
Sometimes one method affords more intuition than the other.

Consider a sequence of n operations σ1, σ2, . . . , σn on the data structure. Let the sequence of states
through which the data structure passes be s0, s1, . . . , sn. Notice that operation σi changes the
state from si−1 to si. Let the cost of operation σi be ci. Define the amortized cost aci of operation
σi by the following formula:

aci = ci + Φ(si)− Φ(si−1), (1)

or
(amortized cost) = (actual cost) + (change in potential).

If we sum both sides of this equation over all the operations, we obtain the following formula:∑
i

aci =
∑
i

(ci + Φ(si)− Φ(si−1)) = Φ(sn)− Φ(s0) +
∑
i

ci.

Rearranging we get ∑
i

ci =

(∑
i

aci

)
+ Φ(s0)− Φ(sn). (2)

If Φ(s0) ≤ Φ(sn) (as will frequently be the case) we get∑
i

ci ≤
∑
i

aci. (3)

Thus, if we can bound the amortized cost of each of the operations, and the final potential is at
least as large as the initial potential, then the bound we obtained for the amortized cost applies to
the actual cost.

3

Potential Function for Binary Counter: We can now apply this technique to the problem
of computing the cost of binary counting. Let the potential Φ be the number of 1’s in the current
number. Our first goal is to show that with this potential the amortized cost of an increment
operation is 2.

Consider the ith increment operation that changes the number from i−1 to i. Let k be the number
of carries that occur as a result of the increment. The cost of the operation is k + 1. The change
in potential caused by the operation is −k + 1. (The number of bits that change from 1 to 0 is k
and one bit changes from 0 to 1.) Therefore the amortized cost of the operation is

aci = k + 1 + (−k + 1) = 2.

Since the final potential is more than the initial potential, we can apply inequality (3) to obtain:∑
i

ci ≤
∑
i

aci = 2n.

Notice that the definition of the amortized cost of an operation depends on the choice of the
potential function Φ. Any choice of potential function whatsoever defines an amortized cost of
each operation. However, these amortized bounds will not be useful unless Φ(s0) − Φ(sn) is also
bounded appropriately.

We have given two different definitions of amortized cost, the first in Section 1, and the other in
equation (1). Which definition applies in a discussion will depend on the context of the discussion.
If we discuss amortized cost in the context of a potential function, then the amortized cost is that
defined by equation (1). If it is outside the context of a potential function, then the meaning of
amortized cost is that given in Section 1.

Most of the art of doing an amortized analysis is in choosing the right potential function. Once a
potential function is chosen we must do two things:

1. Prove that with the chosen potential function, the amortized costs of the operations satisfy
the desired bounds.

2. Bound the quantity Φ(s0)− Φ(sn) appropriately.

4

5 Growing a Table Revisited

Let’s do the analysis of a growing table using potentials. Here’s the potential function:

Φ(n, s) =

{
0 if s ≤ n

2
4(s− n

2) otherwise

2h
Io s

Iz n

Zn

IoCs

0 n
nZ

The first graph above shows Φ() as a function of s (n is fixed). The second graph shows what
happens after n doubles. This happens when s = n, so you can see that the value of the function
goes from 2n to 0 as a result.

Lemma 1 The amortized cost of an insert() into a table using the above potential function is at
most 5. Also, the total cost of a sequence of m insert() operations starting from n = 1, s = 0 is
at most 5m.

Proof: An increment is comprised of two parts. The first part is the conditional grow() operation
that might be done. The second part is putting the new element in, and increasing s. We will
analyze these separately.

First consider grow(). A grow() happens when s = n, so the value of the potential is 2n. After
the grow, n has been doubled, so s = n/2 and the new potential is 0. So ∆Φ = −2n. The actual
cost of grow() is 2n. Adding these together shows that the amortized cost of grow() is 0.

The remaining part of the insert() costs 1, and causes s to increase by 1. The change in potential
is 4. Thus, the amortized cost is 5.

The initial potential is 0, and the final potential is ≥ 0 therefore using equation (3) above we get:

total cost ≤ total amortized cost = 5m.

�

Exercise 1: Give a proof for this lemma using the banker’s method. Where would you put the banker’s
tokens in the data structure?

5

6 Growing and Shrinking a Table

A data structure that supports deletes can both grow and shrink in size. It would be nice if the size
that it occupies is not too much bigger than necessary. This is where shrinking a table is useful.
As before, at any given time the size of the current array will be denoted by n and the number of
things in the table will be denoted by s. The interface has the following operations.

initialize(): create a new table of size 2 with nothing in it. (n = 2 and s = 0)

insert(): add a new element to the table. (increment s)

delete(): delete the given element from the table. (decrement s)

(Other operations, e.g., lookup(), are immaterial for our purposes today.) To implement the above
operations, we’ll need two other primitives to deal with the array:

grow(): Change the size of the table from n to 2n. The cost of this operation is 2n, the
new size of the table.

shrink(): Change the size of the table from n to n/2. The cost of the operation is n.

Using these primitives, here’s how we implement the interface.

initialize(): create a new table of size 2 with nothing in it. (n = 2 and s = 0)

insert(): if s = n then grow(). Now insert the element into the table. (Cost of this
part is 1.)

delete(): if s = n/4 and n ≥ 4 then shrink(). Now delete the element from the table.
(Cost of this part is 1.)

There is a little bit of subtlety in this design. The situation immediately after a grow() or a
shrink() is that s = n/2. The key thing is that right after one of these expensive operations, the
system is very far from from having to do another expensive operation. This allows it time to build
up its piggy bank to pay for the next expensive operation.

Exercise 2: If we change delete() to shrink when s = n/2, show a sequence of operations that incur
large amortized cost.

It also has what is known as hysteresis in physics. This is because the value of n is not purely a
function of s. The value of n depends on the history of the values of s over time. The following
figure shows what happens as s goes from 0 to 5 then back down to 1, then up to 3. The points it
goes through (in order) are:

(0, 2), (1, 2), (2, 2), (3, 4), (4, 4), (5, 8), (4, 8), (3, 8), (2, 8), (1, 4), (2, 4), (3, 4)

f
7
6
5

N 4

3

2

I

O

O I 2345678
S

6

Lemma 2 Using Φ(n, s) := 4|s− n
2 |, the amortized costs of insert() and delete() are 5.

Proof: To get a sense of the potential function, consider the figure below. It shows the value of
Φ() as a function of s (n is fixed).

Its n

0 I I n
4 2

What is the amortized cost of an insertion? It’s the actual cost plus the change in potential. A
grow() may or may not happen as a result of an insertion. If a grow() occurs, what is the amortized
cost of it? Before the grow() the potential is 4|n − n

2 | = 2n. After the grow() the potential is 0.
The actual cost of the grow is 2n. Thus the amortized cost of the grow is 0.

What about the rest of the insert?

actual cost of insert = 1

change in potential ≤ 4

⇒ amortized cost of insert ≤ 5

What about delete? If a shrink() happens, then the potential decreases by n, and the cost is n,
so the amortized cost of shrink() is 0. What about the rest of the delete:

actual cost of delete = 1

change in potential ≤ 4.

⇒ amortized cost of delete ≤ 5.

This completes the proof. �

Theorem 3 The total cost of a sequence of N insertions and deletions is at most 5N + 4.

Proof: The amortized and real costs are related as follows:

∑
actual costs ≤

(∑
amortized costs

)
+ initial potential− final potential.

The initial potential is 4, and the final potential is non-negative. The amortized costs sum to at
most 5N . �

Actually, it’s easy to replace the “+4” part with 0 in the theorem. All we have to do is change the
potential for n = 2 to the following:

Φ(2, s) =

{
0 if s < 2
4(s− 1) otherwise

7

Thus, we’ve zeroed the potential for the case when the initial array of size 2 is not full. The proof
still goes through, because we never shrink an array of size 2, and this part of the potential is not
important. This new potential has an initial value of 0, completing the proof.

Exercise 3: Give a proof for this theorem using the banker’s method. Where would you put the
banker’s tokens in the data structure?

8

	Introduction
	First Example: A Binary Counter
	Second Example: Growing a Table
	Potentials
	Growing a Table Revisited
	Growing and Shrinking a Table

