
15-414: Bug Catching: Automated Program Verification

Lecture Notes on
Optimized SAT-Solving Techniques

Matt Fredrikson

Carnegie Mellon University
Lecture 19

1 Introduction

These lecture notes were originally written by Ruben Martins, and lightly updated for the cur-
rent semester. In Lecture 13 “SAT Solvers & DPLL”, we studied decision procedures
for propositional logic which are often referred to as SAT solvers. In particular, we
studied the DPLL procedure and how Boolean Constraint Propagation (BCP) plays an
important role in reducing the number of interpretations that the SAT solver needs to
explore until it either finds an interpretation that satisfies all clauses or proves that no
interpretations satisfies the formula, i.e. the formula is unsatisfiable.

In Lab 3, we asked you to wrote a provably correct brute-force search SAT solver.
In Lab 4, we ask you to make your SAT solver more efficient by writing and verifying
a minimalistic implementation of the DPLL algorithm, which forms the basis of the
most modern SAT solvers. In this lecture, we will study efficient data structures for
BCP and pre-processing techniques for SAT that simplify a propositional formula ϕ
and transform it into an equivalent or equisatisfiable formula φ. These techniques can be
incorporated into your final submission of Lab 4 and be used to improve the efficiency
of your SAT solver for the verified SAT competition.

2 Review: BCP & DPLL

In this section, we will review the main components of BCP and DPLL. For a full revi-
sion, we refer to the lectures notes of Lecture 13 “SAT Solver & DPLL”. 1

1Available at https://www.cs.cmu.edu/~15414/lectures/13-dpll.pdf

http://www.cs.cmu.edu/~15414/index.html
https://www.cs.cmu.edu/~15414/lectures/13-dpll.pdf

L19.2 Optimized SAT-Solving Techniques

2.1 Boolean Constraint Propagation

Consider the following CNF formula:

(x2 ∨ x3)︸ ︷︷ ︸
C0

∧ (¬x1 ∨ ¬x3)︸ ︷︷ ︸
C1

∧ (¬x1 ∨ ¬x2 ∨ x3)︸ ︷︷ ︸
C2

∧ (x0 ∨ x1 ∨ ¬x3)︸ ︷︷ ︸
C3

∧ (¬x0 ∨ x1 ∨ x3)︸ ︷︷ ︸
C4

(1)

Suppose that your sat procedure begins by choosing to assign x0 to true . This leaves
us with:

(x2 ∨ x3) ∧ (¬x1 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3) ∧ (x0 ∨ x1 ∨ ¬x3) ∧ (¬x0 ∨ x1 ∨ x3)
↔ (x2 ∨ x3) ∧ (¬x1 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3) ∧ (> ∨ x1 ∨ ¬x3) ∧ (⊥ ∨ x1 ∨ x3)
↔ (x2 ∨ x3) ∧ (¬x1 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3) ∧ (x1 ∨ x3)

Since after propagating x0 there are no unit clauses, i.e. clauses with a single unas-
signed literal, then it means we cannot infer any additional information by using BCP.
Suppose that we now assign x1 to true . This leaves us with:

(x2 ∨ x3) ∧ (¬x1 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3) ∧ (x1 ∨ x3)
↔ (x2 ∨ x3) ∧ (⊥ ∨ ¬x3) ∧ (⊥ ∨ ¬x2 ∨ x3) ∧ (> ∨ x3)
↔ (x2 ∨ x3) ∧ (¬x3) ∧ (¬x2 ∨ x3)

Notice the clause C1, which was originally (¬x1 ∨ ¬x3), is now simply (¬x3). It is
obvious that any satisfying interpretation must assign x3 false , so there is really no
choice to make given this formula. We say that x3 is a unit literal, which simply means
that it occurs in a clause with no other literals. BCP when run in the interpretation I =
{x0, x1} will imply that x3 has to be assigned to false . If we propagate this assignment
then this leaves us with:

(x2 ∨ x3) ∧ (¬x3) ∧ (¬x2 ∨ x3)
↔ (x2 ∨ ⊥) ∧ (>) ∧ (¬x2 ∨ ⊥)

↔ (x2) ∧ (¬x2)

After we propagate x3, we arrive at a contradiction since its propagation implies that
x2 must be assigned to true and false . We can then conclude that there is no completion
to the partial interpretation I = {x0, x1} that will satisfy the formula.

2.2 DPLL

BCP can be used to improve the brute-force search SAT solver developed in Lab 3. The
natural place to insert this optimization is at the beginning of the DPLL procedure, be-
fore F is further inspected and any choices are made. This will ensure that if we are

15-414 LECTURE NOTES MATT FREDRIKSON

Optimized SAT-Solving Techniques L19.3

given a formula that is already reducible to a constant through BCP, then we won’t do
any unnecessary work by deciding values that don’t matter. The resulting procedure
is called the David-Putnam-Loveland-Logemann or DPLL procedure, as it was intro-
duced by Martin Davis, Hilary Putnam, George Logemann, and Donald Loveland in
the 1960s [DP60, DLL62].

1 let rec dpll (F:formula) : bool =

2 let Fp = BCP F in

3 if Fp = true then true

4 else if Fp = false then false

5 else begin

6 let p = choose_atom(Fp) in

7 let Ft = (subst Fp p true) in

8 let Ff = (subst Fp p false) in

9 dpll Ft || dpll Ff

10 end

Using an implementation that resembles the one above for such problems would not
yield good results in practice. One immediate problem is that the formula is copied
multiple times and mutated in-place with each recursive call. While this makes it easy
to keep track of which variables have already been assigned or implied via propagation,
even through backtracking, it is extremely slow and cumbersome.

Modern solvers address this by using imperative loops rather than recursive calls,
and mutating an interpretation rather than the formula itself. The interpretation re-
mains partial throughout most of the execution, which means that parts of the formula
cannot be evaluated fully to a constant, but are instead unresolved.

Definition 1 (Status of a clause under partial interpretation). Given a partial interpre-
tation I , a clause is:

• Satisfied, if one or more of its literals is satisfied

• Conflicting, if all of its literals are assigned but not satisfied

• Unit, if it is not satisfied and all but one of its literals are assigned

• Unresolved, otherwise

For example, given the partial interpretation I = {x1,¬x2, x4}:

(x1 ∨ x3 ∨ ¬x4) is satisfied

(¬x1 ∨ x2) is conflicting

(¬x2 ∨ ¬x4 ∨ x3) is unit

(¬x1 ∨ x3 ∨ x5) is unresolved

As we discussed earlier, when a clause C is unit under partial interpretation I , I must
be extended so that C’s unassigned literal ` is satisfied. There is no need to backtrack
on ` before the assignments in I that made C unit have already changed, because `’s

15-414 LECTURE NOTES MATT FREDRIKSON

L19.4 Optimized SAT-Solving Techniques

value was implied by those assignments. Rather, backtracking can safely proceed to
the most recent decision, erasing any assignments that arose from unit propagation in
the meantime. Implementing this backtracking optimization correctly is essential to an
efficient SAT solver, as it is what allows DPLL to avoid explicitly enumerating large
portions of the search space in practice.

3 Efficient Data Structures for BCP

In the previous section, we have seen that a clause can be in one of four status: satisfied,
conflicting, unit and unresolved. The conflicting and unit status are quite important. The
former is an indicator that the current partial interpretation cannot be further extended
and the solver needs to backtrack. The latter informs the solver that a literal can be
propagated via BCP. A naive approach to detect the status of each clause would be to
perform a linear search on all clauses of a propositional formula and for each clause
check its corresponding status. Even though this is likely to be the approach followed
by many of you in your implementation of Lab 4, it is not the most efficient implemen-
tation of BCP. In order to improve its performance, modern SAT solvers use efficient
data structures that improve the detection of the status of a clause.

3.1 Adjacency Lists

GRASP [MSS96] was the first SAT solver (1996) to use clause learning and non-chronological
backtracking and used adjacency lists as its underlying data structures for BCP.

Consider the same CNF formula shown in Section 2.1:

(x2 ∨ x3)︸ ︷︷ ︸
C0

∧ (¬x1 ∨ ¬x3)︸ ︷︷ ︸
C1

∧ (¬x1 ∨ ¬x2 ∨ x3)︸ ︷︷ ︸
C2

∧ (x0 ∨ x1 ∨ ¬x3)︸ ︷︷ ︸
C3

∧ (¬x0 ∨ x1 ∨ x3)︸ ︷︷ ︸
C4

When we assign x1 to true we do not need to check if all clauses are unit clauses! We
only need to check the clauses that contain ¬x1 (C1 and C2) since those are the only
ones that can be turned into unit clauses when x1 is assigned to true . If the solver keeps
an adjacency list for each literal li to all clauses where ¬li occurs, then we significantly
reduce the number of clauses that need to be checked.

For example, for the literals x1 and ¬x1 we would keep the following adjacency lists:

x1 7→ {C1, C2}
¬x1 7→ {C3, C4}

Even though we reduced the number of clauses that needs to be checked, for each
clause we still need to perform a linear search on all its literals to check the correspond-
ing status. Can we check the status of a clause without checking all its literals? To
improve this potential bottleneck, we will need to augment the clause data structure
with counters for the number of satisfied and unsatisfied literals. Using these counters
we can conclude the following:

15-414 LECTURE NOTES MATT FREDRIKSON

Optimized SAT-Solving Techniques L19.5

• If the number of unsatisfied literals is the same as the size of the clause than we
can conclude that the clause is conflicting;

• If the number of satisfied literals is larger or equal to 1 than we can conclude that
the clause is satisfied;

• If the number of satisfied literals is 0 and the number of unsatisfied literals is the
same the size of the clause minus 1 than we can conclude that the clause is unit;

• On the remaining cases we can conclude that the clause is unresolved.

For example, when we have the partial interpretation I = {x0, x1,¬x3}, then we
would have the following counters associated with each clause:

• C0: 1 satisfied, 1 unsatisfied, size 2;

• C1: 1 satisfied, size 2;

• C2: 3 unsatisfied, size 3;

• C3: 3 satisfied, size 3;

• C4: 1 satisfied, 2 unsatisfied, size 3.

Since C2 has 3 unsatisfied literals and its size is 3 than we can conclude that it is
a conflicting clause without needing to traverse. Note that every time you assign a
literal li to true than you would need to increase the satisfied counter of all clauses ci
that contain li. Similarly, you would also need to increase the unsatisfied counter of all
clauses ci that contain ¬li. When backtracking, a similar procedure needs to be done
by decrease the value of the counters accordingly. The invariant that this data structure
maintains is that for all partial interpretations I , the counters must precisely track the
number of satisfied and unsatisfied literals for each clause.

Another potential overhead of adjacency lists is that if li occurs in all clauses than we
will still need to traverse all clauses. Can we do better? In the next two subsections,
we will study lazy data structures 2 for BCP. Their key insight is that we do not need to
know if a clause is satisfied or unresolved. We only need to know when a clause is unit or
conflicting and to detect if a clause is unit it suffices to track two literals of that clause. 3

3.2 Head-Tail

The Head-Tail data structure [Zha97, MSLM09] associates two references with each
clause, the head (H) and the tail (T) literal reference. Initially, the head reference points

2Description of lazy data structures and figures based on [MSLM09].
3When a formula is satisfiable, the DPLL algorithm terminates if all clauses are satisfied by the current

partial interpretation. If we use lazy data structures than we do not know when a clause is satisfied.
However, we can change our termination criterion to be when all variables are assigned a truth value
and there is no conflicting clauses.

15-414 LECTURE NOTES MATT FREDRIKSON

L19.6 Optimized SAT-Solving Techniques

to the first literal and the tail reference points to the last literal. Each time a literal
pointed to by either the or tail is assigned, a new unassigned literal is search for. Both
pointers move towards to the middle of the clause. In case an unassigned literal is iden-
tified, it becomes the new head (or tail) reference, and a new reference is created and
associated with the literal’s variable. These references guarantee that H/T positions are
correctly recovered when the search backtracks. In case a satisfied literal is identified,
the clause is declared satisfied. In case no unassigned literal can be identified, and the
other reference is reached, then the clause is declared unit, unsatisfied or satisfied, de-
pending on the value of the literal pointed to by the other reference. In contrast to the
adjacency lists, in the H/T data structure we do not need to keep a reference from li
to all clauses where ¬li occurs. Instead, we only need to keep references to where ¬li
occurs and is either the head or tail pointer.

Let ih the index of the head and it the index of the tail in a given clause ci. The
H/T data structure maintains the invariant that all literals in index j with 0 ≤ j < ih
are unsatisfied. Similarly, all literals in index k with it ≤ k < n (where n i the size of
the clause) are also unsatisfied. Maintaining this invariant is costly when backtracking.
When the search process backtracks, the references that have become associated with
the head and tail references can be discarded, and the previous head and tail references
become activated. Observe that this requires in the worst-case associating with each
clause a number of literal references in variables that equals the number of literals.

This data structure is illustrated in Figure 1 (left). We illustrate the H/T data struc-
ture for one clause for a sequence of assignments. Each clause is represented by an ar-
ray of literals. Literals have different representations depending on being unassigned,
assigned value 0 (unsatisfied) or assigned value 1 (satisfied). Each assigned literal is
associated with a decision level indicating the level where the literal was assigned. In
addition, we represent the head (H) and tail (T) pointers that point to a specific literal.
Initially, the H/T pointer points to the left/rightmost literal, respectively. These point-
ers only point to unassigned literals. Hence, each time one literal pointed by one of
these pointers is assigned, the pointer has to move inwards. However, a new reference
for the just assigned literal is created (represented with a dash line). When the two
pointers reach the same unassigned literal the clause is unit. When the search back-
tracks, the H/T pointers must be moved. The pointers are now placed at its previous
positions, i.e. at the position they were placed before being moved inwards.

3.3 Two Watched-Literals

The more recent Chaff SAT solver [MMZ+01, MSLM09] proposed a new data structure,
the Watched Literals (WL), that solves some of the problems posed by H/T lists. As
with H/T lists, two references are associated with each clause. However, and in con-
trast with H/T lists, there is no order relation between the two references, allowing
the references to move in any direction. The lack of order between the two references
has the key advantage that no literal references need to be updated when backtracking
takes place. In contrast, unit or unsatisfied clauses are identified only after traversing
all the clauses’ literals; a clear drawback. The identification of satisfied clauses is simi-

15-414 LECTURE NOTES MATT FREDRIKSON

Optimized SAT-Solving Techniques L19.7

figs/lazy.png

Figure 1: Lazy data structures for BCP [MSLM09]

lar to H/T lists. The most significant difference between H/T lists and watched literals
occurs when the search process backtracks, in which case the references to the watched
literals are not modified. Consequently, and in contrast with H/T lists, there is no need
to keep additional references. This implies that for each clause the number of literal
references that are associated with variables is kept constant. This data structure is also
illustrated in Figure 1 (right). The two watched literal pointers are undifferentiated as
there is no order relation. Again, each time one literal pointed by one of these pointers
is assigned, the pointer moves inwards. However, in contrast with the H/T data struc-
ture, we do not stop moving a pointer if it passes the location of another, but instead
keep going. This causes the whole clause to be traversed when the clause becomes unit.
For this expense, we no longer need to maintain references to pointers for backtracking,
and there is no is no need to move them when backtracking to maintain an invariant.

15-414 LECTURE NOTES MATT FREDRIKSON

L19.8 Optimized SAT-Solving Techniques

Note: All these data structures were created with non-chronological backtracking in
mind. Since your SAT solver implementation is likely not to include clause learning,
you will be performing chronological backtracking, i.e. when a conflict is detected only
the last decision is undo. Therefore, you may not fully benefit from some of the gains
of these data structures (e.g. backtracking being free with the two-watched scheme).
For part II of Lab 4, if you choose to improve your data structures, we would suggest
to use adjacency lists. Since BCP is performed very frequently, any improvement to its
data structures is going to have a huge impact on the performance of your SAT solver.

4 SAT Pre-processing

Formula simplification can significantly improve the performance of SAT solvers and
is commonly used on modern SAT solvers. The main goal of pre-processing is to trans-
form a propositional formula ϕ into an equivalent or equisatisfible formula ϕ′ that is easier
to solve than the original formula.

Definition 2 (Equivalent). Two formulas ϕ and φ are equivalent iff all interpretations
of ϕ are also interpretations of φ and vice versa.

Definition 3 (Equisatisfiable). Two formulasϕ and φ are equisatisfiable ifϕ is satisfiable
whenever φ is satisfiable and vice versa, i.e. either both formulas are satisfiable or both
are unsatisfiable. However, contrary to equivalence, ϕ and φ do not need to have the
same interpretations to be equisatisfiable.

From the pre-processing techniques presented in this section, variable elimination
is the only technique that solely preserves equisatisfiablity. The remaining techniques
preserve formula equivalence.

4.1 Pure literal rule

Any atom that only appears in either positive or negative literals is called pure, and
their corresponding atoms must always be assigned in a way that makes the literal
true . Thus, they do not constrain the problem in a meaningful way, and can be as-
signed without making a choice. This is called pure literal elimination and is one type of
simplification that can be applied to CNF formulas.

Consider the following CNF formula:

(x1 ∨ x2)︸ ︷︷ ︸
C0

∧ (¬x1 ∨ x2)︸ ︷︷ ︸
C1

∧ (x1 ∨ ¬x2 ∨ x3)︸ ︷︷ ︸
C2

∧ (¬x1 ∨ x2 ∨ x3)︸ ︷︷ ︸
C3

Notice that x3 appears only as a positive literal in this formula. Hence, we can assign
x3 to true and satisfy the literal. This procedure will simplify the above formula into:

(x1 ∨ x2) ∧ (¬x1 ∨ x2) ∧ (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x1 ∨ x3)
↔ (x1 ∨ x2) ∧ (¬x1 ∨ x2) ∧ (x1 ∨ ¬x2 ∨ >) ∧ (¬x1 ∨ x1 ∨ >)

↔ (x1 ∨ x2) ∧ (¬x1 ∨ x2)

15-414 LECTURE NOTES MATT FREDRIKSON

Optimized SAT-Solving Techniques L19.9

In practice, pure literal elimination can significantly reduce the complexity of proposi-
tional formulas, and so it is sometimes used as a pre-processing simplification before
handing the formula to a solver. However, oftentimes there are no pure literals in a
formula.

4.2 Resolution rule

Recall the resolution rule presented in Lecture 13:

(res)
Γ ` P,∆ Γ ` ¬P,∆

Γ ` ∆

We can use the resolution rule to derive additional clauses to add to a propositional
formula. Notice that these resolvents (the succedent of a resolution rule is called a re-
solvent) are implied by the formula but may allow unit propagation to infer additional
information. There is a trade-off between adding too many clauses to the formula and
the benefit that these clauses may bring. In practice, one may restrict the number of
clauses added to the formula by only adding resolvents of a given size (e.g. binary
resolvents).

Consider the same CNF formula shown in Section 2.1:

(x2 ∨ x3)︸ ︷︷ ︸
C0

∧ (¬x1 ∨ ¬x3)︸ ︷︷ ︸
C1

∧ (¬x1 ∨ ¬x2 ∨ x3)︸ ︷︷ ︸
C2

∧ (x0 ∨ x1 ∨ ¬x3)︸ ︷︷ ︸
C3

∧ (¬x0 ∨ x1 ∨ x3)︸ ︷︷ ︸
C4

If we resolve C0 and C2 on x2 then we can infer the following clause that can be
added to the formula:

(res)
(x2 ∨ x3) (¬x1 ∨ ¬x2 ∨ x3)

(x3 ∨ ¬x1)
Note that a clause may have several literals where resolution can be performed.

When performing resolution, we can observe that the clause (x3 ∨¬x1) is equivalent to
(x3 ∨ x3 ∨ ¬x1). One may also infer tautologies when applying the resolution rule.

Definition 4 (Tautology). A clause ω is a tautology iff it contains a literal li with both
negative and positive polarities. For example, (x1 ∨ ¬x1) is a tautology since it is true
in all interpretations.

Finally, if the resolution rule derives the empty clause. Then we can conclude that
the formula is unsatisfiable. For instance, if the formula contains the clause (x1) and
(¬x1) then the formula is unsatisfiable and resolution derives an empty clause:

(res)
(x1) (¬x1)

()

15-414 LECTURE NOTES MATT FREDRIKSON

L19.10 Optimized SAT-Solving Techniques

4.3 Variable Elimination

The resolution rule can be recursively applied to determine the satisfiability of a propo-
sitional formula. However, this approach suffers from an exponential blow up in mem-
ory.

Definition 5 (Variable elimination). A variable xi can be eliminated from a proposi-
tional formula ϕ by resolving all pairs of clauses that contain both xi and ¬xi. The
resolvents can be added to ϕ and the clauses that contain xi can be removed from the
formula. The new formula ϕ′ is equisatisfiable to ϕ.

Consider the same CNF formula shown in Section 2.1:

(x2 ∨ x3)︸ ︷︷ ︸
C0

∧ (¬x1 ∨ ¬x3)︸ ︷︷ ︸
C1

∧ (¬x1 ∨ ¬x2 ∨ x3)︸ ︷︷ ︸
C2

∧ (x0 ∨ x1 ∨ ¬x3)︸ ︷︷ ︸
C3

∧ (¬x0 ∨ x1 ∨ x3)︸ ︷︷ ︸
C4

Assume we want to eliminate variable x1 from the above formula. We start by iden-
tifying all clauses where x1 or ¬x1 occurs.

• x1 7→ {C3, C4}

• ¬x1 7→ {C1, C2}

Now we resolve all pairs of clauses that contain x1 and ¬x1:

(res)
C3 : (x0 ∨ x1 ∨ ¬x3) C1 : (¬x1 ∨ ¬x3)

R1 : (x0 ∨ ¬x3)

(res)
C3 : (x0 ∨ x1 ∨ ¬x3) C2 : (¬x1 ∨ ¬x2 ∨ x3)

R2 : (¬x2 ∨ x3 ∨ x0 ∨ ¬x3)

(res)
C4 : (¬x0 ∨ x1 ∨ x3) C1 : (¬x1 ∨ ¬x3)

R3 : (¬x0 ∨ x3 ∨ ¬x3)

(res)
C4 : (¬x0 ∨ x1 ∨ x3) C2 : (¬x1 ∨ ¬x2 ∨ x3)

R4 : (¬x0 ∨ x3 ∨ ¬x2 ∨ x3)
Note that the clauses R2, R3 and R4 are tautologies. We can simplify the initial for-

mula by removing C1, C2, C3 and C4 from the formula and add the resolvent R1. After
eliminating x3 from the initial formula we obtain:

(x2 ∨ x3)︸ ︷︷ ︸
C0

∧ (x0 ∨ ¬x3)︸ ︷︷ ︸
R1

Observe that resolving all pairs of clauses that contain a variable can increase the
number of clauses from the simplified formula. Therefore, resolution is often used as
a preprocessing technique only when the number of resolvents is smaller or equal to the
number of clauses that contain the variable to be eliminated.

15-414 LECTURE NOTES MATT FREDRIKSON

Optimized SAT-Solving Techniques L19.11

4.4 Failed literal rule

BCP can also be used as a preprocessing technique. Let ϕ be a propositional formula,
and li (¬li) a literal to be propagated. If propagating li (¬li) in ϕ leads to a conflict, than
we can conclude that li (¬li) must be assigned to false (true) in all interpretations I of ϕ.
We call this procedure the failed literal rule.

Consider again the CNF formula shown in Section 2.1:

(x2 ∨ x3)︸ ︷︷ ︸
C0

∧ (¬x1 ∨ ¬x3)︸ ︷︷ ︸
C1

∧ (¬x1 ∨ ¬x2 ∨ x3)︸ ︷︷ ︸
C2

∧ (x0 ∨ x1 ∨ ¬x3)︸ ︷︷ ︸
C3

∧ (¬x0 ∨ x1 ∨ x3)︸ ︷︷ ︸
C4

Performing BCP with the interpretation I = {x1} leads to:

(x2 ∨ x3) ∧ (⊥ ∨ ¬x3) ∧ (⊥ ∨ ¬x2 ∨ x3) ∧ (x0 ∨ > ∨ ¬x3) ∧ (¬x0 ∨ > ∨ x3)
↔ (x2 ∨ x3) ∧ (¬x3) ∧ (¬x2 ∨ x3)
↔ (x2 ∨ ⊥) ∧ (>) ∧ (¬x2 ∨ ⊥)

↔ (x2) ∧ (¬x2)

Since propagating x1 leads to a conflict and no other decision has been made, then it
means that x1 needs to be assigned to false in all interpretations of ϕ.

4.5 Probing

BCP can also be used for probing. The key idea behind probing is to propagate li and
¬li and see if any literal lj is implied by both propagations. If this is the case than we
can conclude that lj must be assigned to true in all interpretations of ϕ.

Consider the following CNF formula:

(x1 ∨ x2)︸ ︷︷ ︸
C0

∧ (¬x1 ∨ x2)︸ ︷︷ ︸
C1

∧ (x1 ∨ ¬x2 ∨ x3)︸ ︷︷ ︸
C2

∧ (¬x1 ∨ x2 ∨ x3)︸ ︷︷ ︸
C3

When we propagate x1 and ¬x1, we have the following:

• BCP(ϕ, x1) 7→ {x2}

• BCP(ϕ,¬x1) 7→ {x2}

Therefore, we can conclude that x2 must be assigned to true in all interpretations of
the formula.

References

[DLL62] Martin Davis, George Logemann, and Donald Loveland. A machine pro-
gram for theorem-proving. Commun. ACM, 5(7):394–397, July 1962.

15-414 LECTURE NOTES MATT FREDRIKSON

L19.12 Optimized SAT-Solving Techniques

[DP60] Martin Davis and Hilary Putnam. A computing procedure for quantifica-
tion theory. J. ACM, 7(3):201–215, July 1960.

[MMZ+01] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and
Sharad Malik. Chaff: Engineering an Efficient SAT Solver. In Design Au-
tomation Conference, pages 530–535. ACM, 2001.

[MSLM09] Joao Marques-Solva, Inês Lynce, and Sharad Malik. Conflict-Driven Clause
Learning SAT Solvers. In Handbook of Satisfiability, pages 131–153. IOS
Press, 2009.

[MSS96] Joao Marques-Silva and Karem A. Sakallah. GRASP - a new search algo-
rithm for satisfiability. In ICCAD, pages 220–227. IEEE Computer Society,
1996.

[Zha97] Hantao Zhang. SATO: an efficient propositional prover. In International
Conference on Automated Deduction, pages 272–275. Springer, 1997.

15-414 LECTURE NOTES MATT FREDRIKSON

	Introduction
	Review: BCP & DPLL
	Boolean Constraint Propagation
	DPLL

	Efficient Data Structures for BCP
	Adjacency Lists
	Head-Tail
	Two Watched-Literals

	SAT Pre-processing
	Pure literal rule
	Resolution rule
	Variable Elimination
	Failed literal rule
	Probing

