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Matt Fredrikson

Carnegie Mellon University
Lecture 17

1 Introduction

We’ve seen how to check Computation Tree Logic (CTL) formulas against computation
structures. The algorithm for doing so directly computes the semantics of formulas, and
makes use of the fixpoint properties of monotone functions to derive the set of states
in a transition structure that satisfy the formula. We saw in a previous lecture that LTL
formulas are defined over traces, of where there are infinitely many in a computation
structure, so a similar approach will not work for LTL.

In this lecture, we will see how to check LTL formulas against computation structures
by reducing the problem to checking whether the language defined by a finite automa-
ton is empty. However, because the traces of a computation structure are infinite, we
cannot use the familiar tools available for nondeterministic finite automata (NFAs), and
instead need to define a new type of automata that can recognize infinite words. These
are called Büchi automata, and we will see that they have useful properties that can be
used to construct effective model checking algorithms for LTL [Var86].

2 Review: LTL

In the previous lecture, we introduced Linear Temporal Logic (LTL). The temporal
modalities of LTL allow us to formalize properties that involve time and sequencing,
where the truth value of an LTL formula is defined over traces, or potentially infinite
sequences of symbols from an alphabet of states. Definition 1 gives the meaning of
an LTL formula over a trace. Definition 4 extends the semantics to transition systems,
where we require that for all traces σ obtained by running a computation structure K,
σ |= P .

http://www.cs.cmu.edu/~15414/index.html
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Definition 1 (LTL semantics (traces)). The truth of LTL formulas in a trace σ is defined
inductively as follows:

1. σ |= F iff σ0 |= F for state formula F provided that σ0 6= Λ

2. σ |= ¬P iff σ 6|= P , i.e. it is not the case that σ |= P

3. σ |= P ∧Q iff σ |= P and σ |= Q

4. σ |= XP iff σ1 |= P

5. σ |= �P iff σi |= P for all i ≥ 0

6. σ |= ♦P iff σi |= P for some i ≥ 0

7. σ |= PUQ iff there is an i ≥ 0 such that σi |= Q and σj |= P for all 0 ≤ j < i

In all cases, the truth-value of a formula is, of course, only defined if the respective
suffixes of the traces are defined.

3 Transition structures of computations

In the previous lecture we defined a semantics for the familiar simple imperative lan-
guage that equates programs with sets of traces over states. This generalized the previ-
ous relational semantics that we used when reasoning about contracts, and allowed us
to evaluate LTL formulas over runs of programs. Another way of formalizing the se-
mantics of a program, or for that matter any arbitrary computation, is to define a struc-
ture that describes the way in which the computation can transition between states. We
can even recover the trace semantics from the previous lecture from this, by assigning
some set of initial states and collecting the set of traces that one gets by following the
transition structure repeatedly.

Definition 2 (Kripke structure). A Kripke frame (W,y) consists of a set W with a transi-
tion relation y ⊆W ×W where sy t indicates that there is a direct transition from s to
t in the Kripke frame (W,y). The elements s ∈W are also called states. A Kripke struc-
tureK = (W,y, v) is a Kripke frame (W,y) with a mapping v : W → Σ→ {true, false}
assigning truth-values to all the propositional atoms in all states.

Note that this definition does not explicitly account for initial states. We will gener-
ally assume that all states are possible initial states, and if we need to restrict this in
some specific cases, we will be sure to make a note of which states are initial. Given a
program α, we can intuitively see how it is possible to define a Kripke structure whose
traces correspond to τ(α). But note that the relational program semantics [[α]] between
initial and final states in Lecture 3 is also an example of a Kripke structure; checking that
this is the case is a good exercise to help familiarize yourself with the above definition.

Kripke structures impose no requirements on the totality of transitions or the finite-
ness of the state space, but it is sometimes helpful to assume such restrictions. Com-
putation structures (Definition 3 below), refine Kripke structures by requiring the state
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Figure 1: Computation structure describing the operation of a vending machine.

space to be finite and each state to have at least one successor. These conditions make
it possible to define model checking algorithms for unbounded (potentially infinite)
computations.

Definition 3 (Computation structure). A Kripke structure K = (W,y, v) is called a
computation structure if W is a finite set of states and every element s ∈ W has at least
one direct successor t ∈W with sy t. A (computation) path in a computation structure
is an infinite sequence s0, s1, s2, s3, . . . of states si ∈ W such that si y si+1 for all i. The
mapping v is the same as in Definition 2.

Finally, we can now define LTL semantics over computations structures rather than
individual traces. Intuitively, a formula P is true for a computation structure K iff
σ |= P for all paths σ in K.

Definition 4 (LTL semantics (computation structure)). Given an LTL formula P and
computation structure K = (W,y, v), K |= P if and only if σ |= P for all σ where
σi = v(si) for some path s0, s1, s2, . . . in K.

Some examples of these structures are useful in developing intuition. The set of
states W represented in Figure 1 are W = {s0, s1, s2, s3}. The propositional atoms Σ
that appear in those states are Σ = {coin,select,coffee,tea}. Here we do assume an
initial state I = {s0}. The mapping v and transition relation are given as follows:

s0 → {coin→ true}
s1 → {select→ true}
s2 → {coffee→ true}
s3 → {tea→ true}

s0 y s1

s1 y s2

s1 y s3

s2 y s0

s3 y s0
Note that we only shown the propositional atoms that are assigned the truth value true
but the remaining atoms would be assigned truth value false.
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Temporal logic is particularly helpful in verifying properties of concurrent systems.
The following computation structure represents a system of two concurrent processes,
each of which is either executing in a noncritical section, trying to enter the critical
setion, or are in the critical section These atomic propositional letters are used with
suffix 1 to indicate that they apply to process 1 and with suffix 2 to indicate process 2.
So for example, the notation nt indicates a state in which n1 ∧ t2 is true (and no other
propositional letters), meaning that process 1 is in its noncritical section, and process 2
is trying to enter its noncritical section.

nn
0

tn

1

cn2

ct

4

tt

3

nt

5

tt

6

tc

8

nc

7

We can express some useful properties about the potential behavior of this computa-
tion using LTL formulas.

• The mutual exclusion safety property �(¬c1 ∨ ¬c2) characterizes traces where it
is never the case that both processes are in the critical section at the same time.
Equivalently, traces where at all times it is true that either ¬c1 or ¬c2.

• The liveness property �(t1 → ♦c1) ∧ �(t2 → ♦c2) characterizes traces that satisfy
the requirement that whenever a process tries to enter its critical section (ti is
true), it eventually succeeds (ci becomes true).

More generally, safety properties impose constraints which stipulate that something
“bad” never happens; in the example above, the “bad” thing is having both processes in
the critical section at the same time. Liveness properties specify that something “good”
will always happen eventually; in the above example, the “good” thing is entering the
critical section eventually after having tried to do so.

4 LTL model checking

Continuing with the most recent example of two concurrent processes, let’s take a closer
look at the mutual exclusion safety property. In order to check that the transition struc-
ture satisfies it, we need to verify that all traces in the structure satisfy ¬c1 ∨ ¬c2 at all
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times. As the set of traces in this structure is infinite, approaching this directly by ex-
haustive enumeration will not be productive. Indeed, we could proceed inductively as
we have for other unbounded computations in this course.

But our experience with induction has always relied heavily on providing an invari-
ant from which we can build a sufficiently strong inductive hypothesis. We want to
develop a completely automatic technique for verifying LTL formulas, so we will take
a different approach.

A formal language perspective. Recalling that the semantics of LTL formulas are
defined over traces, we can define the language L(P ) of an LTL formula P as the set of
traces that satisfy P .

Definition 5 (LTL Semantics (language over traces)). Let P be an LTL formula and Σ a
set of atomic propositions. Then the language of P is defined as:

L(P ) = {σ ∈ Σω : σ |= P}

where Σω is the set of infinite strings over Σ, and the truth relation |= is defined induc-
tively in Definition 1.

Definition 5 equates the meaning of an LTL formula with a language that describes
every behavior that is allowed by the property. Viewing this set as a language, each
word in the language is an infinite-length string with characters that correspond to sets
of atomic propositions. For example, the mutual exclusion property from earlier has
the following word in its language:

σ = ({}, {c2}, {c1}, {}, . . . (repeated infinitely))

In the above, we use the convention that any atomic proposition not appearing in a
state is assumed to be false; so the appearance of {} means that no atomic proposition
is true, whereas {c1}means that c1 is true but c2 is false.

The following word is not in the language of �(¬c1 ∨ ¬c2), because c1 and c2 are
simultaneously true in the fourth state:

σ = ({}, {c2}, {c1}, {c1, c2}, . . . (repeated infinitely))

We can also define the set of traces L(K) of a computation structure K, as the set of
all infinite-length words over atomic propositions obtained by following transitions in
K from an initial state. L(K) corresponds to all of the possible behaviors that K might
exhibit in its execution.

Definition 6 (Language of a computation structure). Let K = (W,y, v) be a compu-
tation structure defined over a set of atomic propositions Σ. Then the language of K,
denoted L(K), is: L(K) = {σ ∈ Σω : s0, s1, . . . a path in K and σi = v(si)}.
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In the computation structure given above, one such behavior (i.e. word in the lan-
guage) would be:

σ = ({n1, n2}, {n1, t2}, {n1, c2}, . . . (repeated infinitely))

Interpreting the LTL formula and computation structure as languages gives us a new
way to think about the model checking problem. Namely, we can reason that in order
for a transition structureK to satisfy formula P , it must be that every trace ofK satisfies
P . The languages L(P ) gives us exactly the set of traces that satisfy P , so we have only
to check that the language L(K) is contained in L(P ):

L(K) ⊆ L(P ) (1)

Equation 1 equivalent to saying that all of the behaviors of K are among the set of
behaviors that are allowed by P .

Checking by complement. How can we check whether Equation 1 holds for a given
K and P ? Suppose for the moment that L(K) and L(P ) were regular languages con-
taining only finite words. Then we could exploit the fact that regular languages are
closed under intersection and complementation, in addition to the following fact (see
[BKL08] or for a proof):

L(K) ⊆ L(P ) if and only if L(K) ∩ L(P ) = ∅ (2)

L(P ) is the complement of L(P ), i.e., the set of all behaviors that are not allowed by P .
We can check that Equation 2 matches the intuition developed so far: if L(K) ∩ L(P )
is empty, then there are no behaviors of K that are not allowed by P . Removing the
double negative, all behaviors of K are allowed by P .

Assuming we have the finite-state machine corresponding to a regular language,
checking whether that language is empty is a reachability problem [BKL08, CGP99]:
we simply look for a path through the automaton from an initial state to an accepting
state. This suggests the following algorithm for checking property P against transition
structure K (assuming both are equivalent to regular languages):

1. Construct finite-state machines AK and AP corresponding to L(A) and L(P ), re-
spectively. We know that AP exists because regular languages are closed under
complementation.

2. Use the fact that regular languages are closed under intersection to computeAK∩P
from AK and AP .

3. Check whether L(K) ∩ L(P ) is empty by looking for a path in AK∩P from an
initial state to an accepting state.

a) If L(K) ∩ L(P ) = ∅, then conclude that L(K) ⊆ L(P ) so K satisfies P (K |=
P ).
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b) If L(K) ∩ L(P ) 6= ∅, then conclude that K 6|= P . Any word in L(K) ∩ L(P )
corresponds to a counterexample of P , i.e., a trace exhibiting a behavior in
K that is not allowed by P .

This procedure is appealing for several reasons. It is completely automatic, and reduces
model checking to a reachability problem over the graph of an automata. In cases where
the transition structure does not satisfy the property in question, there is a simple pro-
cedure for extracting counterexamples that witness this fact; such counterexamples can
be useful in practice for diagnostic reasons by highlighting behaviors that violate the
property.

Of course, we can’t actually use this procedure to check LTL formulas against compu-
tation structures because we know thatL(P ) andL(K) are not regular languages—their
words are infinite, and can’t be recognized by finite state machines.

5 Automata on Infinite Words

In order to recover a model checking procedure like the one described in the previous
section, we look to automata that accept languages of infinite words. Nondeterministic
Büchi automata (NBAs) are a variant of nondeterministic finite automata (NFAs) that
do exactly this.

Definition 7 (Nondeterministic Büchi Automaton (NBA)). A nondeterministic Büchi
automaton A is a tuple A = (Q,Σ, δ, Q0, F ) where:

1. Q is a finite set of states.

2. Σ is an alphabet.

3. δ : Q× Σ→ ℘(Q) is a transition function.

4. Q0 ⊆ Q is a set of initial states

5. F ⊆ Q is a set of accepting states, which we sometimes call the acceptance set.

A run for (infinite) trace σ = σ0, σ1, σ2, . . . is an infinite sequence of states q0, q1, q2, . . .
in Q such that q0 ∈ Q0 and qi+1 ∈ δ(qi, σi) for all i ≥ 0. A run q0, q1, q2, . . . is accepting
if qi ∈ F for infinitely many indices i ≥ 0. The language of A is:

L(A) = {σ ∈ Σω : there exists an accepting run for σ in A}

In the above, Σω is the set of all infinite words over alphabet symbols in Σ.

Notice that in terms of syntax, there is no distinction between NBAs and NFAs: both
have a finite number of states, an alphabet, a transition function, and a subset of initial
and accepting states. The transition relation in a NBA works in exactly the same way
as in a NFA, i.e., by consulting the “row” for the current state and alphabet symbol to
determine which state (of potentially many) to visit next.
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The difference is in the semantics. NBAs accept infinite words, so it is meaningless to
consider whether a run ends in an accepting state (as in the case of NFAs) because there
is no end to an infinite run. Rather, the semantics of NBAs require than an accepting
run visit the acceptance set F infinitely often. This might seem quite demanding at
first, but because the set of states Q is finite, any infinite run must visit some non-empty
set of states Q′ ⊆ Q infinitely often. The acceptance criterion simply asks whether Q′

has a non-empty intersection with F .
As a convenient shorthand, we will use Boolean combinations of atomic propositions

to label transitions. So if Σ = ℘({a, b}) then a transition labeled a ∨ b stands for three
separate transitions: one labeled by {a}, another labeled by {b}, and the third by {a, b}.

Notice that Definition 7 does not require that δ give each state a direct successor, or
impose any form of totality on it. This might seem strange in light of the corresponding
requirement for computation structures, as NBAs intend to capture infinite behaviors
just like the former. However, there is no contradiction here. Consider the following
example, which accepts all infinite strings of {a, b, c} that begin with a finite number of
a’s, followed by a single b, following by an infinite number of c’s.

q0 q1
b

a c

From state q0, there do not exist any transitions on symbol c. So is the word acbcccc . . .
in the language of this NBA? Looking at the semantics given in Definition 7, we see that
it is not. In order to be in the language, there must exist an accepting run, and there is
no way to run this NBA on the word acbcccc . . . because it “falls off” of the transition
relation.

Examples. Going back to our original goal of checking the safety and liveness proper-
ties of the mutual exclusion example, recall the formula �(¬c1 ∨ ¬c2). We can represent
this property using a NBA, by setting the alphabet Σ to be ℘(atomic propositions) =
℘({c1, c2, n1, n2, t1, t2}).

Returning to the automaton for �(¬c1 ∨ ¬c2), the single initial state q0 of the automa-
ton is also the acceptance set, and there is a self-transition on this initial state labeled
¬c1∨¬c2. The second (and only other) state q1 is not in the acceptance set, and is reach-
able from q0 on c1 ∧ c2. Finally, there must be a self-loop on q1 for any alphabet symbol
(i.e., true), because once the mutual exclusion invariant is violated by c1 ∧ c2, there is
no way to “repair” the trace so that it satisfies the property. The transition diagram is
shown below.

15-414 LECTURE NOTES MATT FREDRIKSON



LTL Model Checking & Büchi Automata L17.9

q0 q1
c1 ∧ c2

¬c1 ∨ ¬c2 true

We can also build an automaton for the complement of this property, which corre-
sponds to the set of all “bad” behaviors that violate the mutual exclusion property. In
this case, the complement is easily obtained by swapping the states in the acceptance
set {q0} with their complement {q1}. This is due to the fact that the automaton is actu-
ally deterministic. For general NBA, complementation is not so straightforward [B6̈2],
but we will return to this inconvenience later on.

q0 q1
c1 ∧ c2

¬c1 ∨ ¬c2 true

Looking at another example, let’s build an NBA for �(t1 → ♦c1) ∧�(t2 → ♦c2). Be-
cause either side of the conjunction is symmetrical with the other, we will show one
automaton for �(ti → ♦ci).

q0 q1

ti ∧ ¬ci

ci
¬ti ∨ ci ¬ci

This NBA begins in its accepting state, and stays there as long as process i does not
try to enter its critical section (or it tries to enter, and succeeds immediately in the same
state). If the process tries to enter its critical section and does not immediately succeed
(ti ∧ ¬ci), then the NBA transitions to a non-accepting state and stays there as long as
the process doesn’t enter the critical section (¬ci). Finally, if the process enters its critical
section (ci), the automaton transitions back to its initial accepting state.

Computation structures and Büchi automata. We are moving towards a language-
theoretic solution to the LTL model checking problem. Recall that the first steps in the
case of regular languages was to obtain automata that represent the languages of the
computation structure and LTL property. We’ve seen an example of how to convert an
LTL property into a NBA, and we’ll return to a more general solution for converting any
LTL formula to NBA later. For now, let’s convince ourselves that a given computation
structure K = (W,y, v) with initial states W0 can be represented with NBA.
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Theorem 8. Let K = (W,y, v) be a computation structure with initial states W0 over atomic
predicates AP . Then the the nondeterministic Büchi automaton AK given by the following
criterion satisfies L(AK) = L(K),

AK = (Q = W ∪ {ι},Σ = ℘(AP ), δ, Q0 = {ι}, F = W ∪ {ι})

where q′ ∈ δ(q, σ) iff q y q′ and v(q′, σ), and q ∈ δ(ι, σ) whenever q ∈W0 and v(q, σ).

Theorem 8 says that a computation structure K is converted to a NBA AK with the
following steps:

1. The states of AK are identical to those of K, except a new initial state ι not ap-
pearing in K is added. ι is the only initial state of AK .

2. The alphabet of AK is the powerset of the atomic propositions AP used to define
K.

3. The transition function δ of AK includes all of the state transitions appearing in
K. The transition symbols for δ correspond to the atomic propositions assigned
by v to the post state of each element of y. Moreover, δ gives transitions from ι
to every initial state in W0, again using the transition symbols from ℘(AP ) that v
assigns to the corresponding q ∈W0.

4. The acceptance set of AK corresponds to all of the states W ∪ {ι}. This is due to
the fact that all runs ofK that obey the transition relation are in L(K), so any trace
that doesn’t “fall off” of AK is in L(AK).

As an example, below we show the NBA corresponding to our running mutual ex-
clusion computation structure. Notice that even though there is only one initial state
in the original computation structure, it has still been replaced in the NBA with the
distinguished state ι. While it may not seem as though we have gained anything by
doing this, because we label transitions on the NBA with the atomic propositions of the
post state from the computation structure, there must be an incoming transition to this
state in the NBA so that the first symbol from words appearing in L(K) is processed
consistently with the rest.
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