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1 Introduction

In the previous lecture we studied decision procedures for propositional logic. How-
ever, verification conditions that arise in practice often combine expression from differ-
ent theories. Consider the following examples:

• A combination of linear arithmetic and uninterpreted functions:

(x2 ≥ x1) ∧ (x1 − x3 ≥ 2) ∧ (x3 ≥ 0) ∧ f(f(x1)− f(x2)) 6= f(x3)

• A combination of linear arithmetic and arrays:

x = v{i← e}[j] ∧ y = v[j] ∧ x > e ∧ x > y

In this lecture, we will show how we can solve formulas that combine multiple theo-
ries by using the Nelson-Oppen combination method and the DPLL(T) framework.1

2 Preliminaries

A first-order theory T is defined by the following components.

• Its signature Σ is a set of constant, function, and predicate symbols.

• Its set of axioms A is a set of closed first-order logic formulae in which only con-
stant, function, and predicate symbols of Σ appear.

1This lecture is based on one written by Ruben Martins, who adapted content from [BM07] and [KS16]

http://www.cs.cmu.edu/~15414/index.html


L14.2 Satisfiability Modulo Theories

Definition 1 (T -valid). A Σ-formula ϕ is valid in the theory T (T -valid), if every inter-
pretation I that satisfies the axioms of T (i.e., I |= A for every A ∈ A) also satisfies ϕ
(i.e., I |= ϕ).

Definition 2 (T -satisfiable). Let T be a Σ-theory. A Σ-formula ϕ is T -satisfiable if there
exists an interpretation I such that I |= ϕ.

Definition 3 (T -decidable). A theory T is decidable if T |= ϕ is decidable for every
Σ-formula. That is, there exists an algorithm that always terminate with “yes” if ϕ is
T -valid or with “no” if ϕ is T -invalid.

Some theories that we will use throughout this lecture are:

• The theory of equality with uninterpreted functions (TE).

• The theory of real numbers (TR).

2.1 Theory of Equality

The theory of equality with uninterpreted functions TE is the simplest first-order the-
ory. Its signature consists of a binary equality predicate (=), and all constant, function,
and predicate symbols:

ΣE : {=, a, b, c, . . . , f, g, h, . . . , p, q, r, . . .}

We will adopt the convention of using letters at the beginning or end of the alphabet
like a, b, c, x, y, . . . for constants, f , g, h, . . . for function symbols, and later alphabet
characters p, q, r, . . . for predicates.

Intuitively, TE captures statements about simple equality relationships between arbi-
trary objects that we do not assume anything else about. Much like the atomic propo-
sitions in propositional logic refer to arbitrary, uninterpreted assertions that are either
true or false, the constants in TE are arbitrary objects that can be either equal or not
equal to each other, can be operated on by arbitrary functions, and further related by
arbitrary predicates.

The axioms of TE are the following:

1. ∀x.x = x (reflexivity)

2. ∀x, y.x = y → y = x (symmetry)

3. ∀x, y, z.x = y ∧ y = z → x = z (transitivity)

4. ∀x̄, ȳ.(
∧n
i=1 xi = yi)→ f(x̄) = f(ȳ) (congruence)

5. ∀x̄, ȳ.(
∧n
i=1 xi = yi)→ (p(x̄)↔ p(ȳ)) (equivalence)
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Satisfiability Modulo Theories L14.3

2.2 Theory of Reals

The theory of reals TR has signature

ΣR : {0, 1,+,−, ·,=,≥}

where

• 0 and 1 are constants;

• + (addition) and · (multiplication) are binary functions;

• - (negation) is a unary function;

• and = (equality) and ≥ (weak inequality) are binary predicates.

TR has a complex axiomatization and we will not describe all its axioms here since
they are not essential to the understanding of the Nelson-Oppen procedure and the
DPLL(T) framework. We refer the interested student to [BM07] for a detailed reading
on the axiomatization of the theory of reals.

2.3 Theory combination

Definition 4 (Theory combination). Given two theories T1 and T2 with signatures Σ1

and Σ2, respectively, the theory combination T1 ⊕ T2 is a (Σ1 ∪ Σ2)-theory defined by
the axiom set T1 ∪ T2.

Definition 5 (The theory combination problem). Let ϕ be a Σ1∪Σ2 formula. The theory
combination problem is to decide whether ϕ is T1⊕T2-valid. Equivalently, the problem
is to decide whether the following holds: T1 ⊕ T2 |= ϕ.

Given a Σ-formula ϕ in TE and a Σ-formula ψ in TR can we check the satisfiability of
ϕ∧ψ by checking the satisfiability of ϕ and ψ independently and combining the results?
We can quickly find a counterexample that tells us this is not a sound approach for the
theory combination problem. Consider the following combination of formulas from TE
and TR:

ϕ = f(x) 6= f(y)

ψ = x+ y = 0 ∧ x = 0

Both ϕ and ψ are satisfiable but ϕ implies that x 6= y and ψ implies that x = y, therefore
their combination is not satisfiable!

3 Nelson-Oppen Procedure

The Nelson-Oppen procedure solves the theory combination problem for theories T1
and T2 that comply with the following restrictions:
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L14.4 Satisfiability Modulo Theories

• Both theories T1 and T2 are quantifier-free (conjunctive) fragments.

• Equality (=) is the only symbol in the intersection of their signatures, i.e., Σ1∩Σ2 =
{=}.

• Both theories are stably infinite.

Definition 6 (Stably infinite). A theory T with signature Σ is stably infinite if for ev-
ery satisfiable ΣT -formula ϕ, there is an interpretation that satisfies ϕ and that has a
universe of infinite cardinality

Consider the theory Ta,b with signature ΣT : {a, b,=} where both a and b are con-
stants and with the following axiom:

• ∀x.x = a ∨ x = b (two)

Because of axiom (two), every interpretation I is such that the domain of I has at
most two elements. Therefore, Ta,b is not stably infinite. Note that most of the the-
ories of interest for program verification are stably infinite, e.g. theory of equality of
uninterpreted functions and theory of integers.

The Nelson-Oppen procedure for a formula ϕ that combines different theories con-
sists of:

1. Purification: Purify ϕ into F1, . . . , Fn.

2. Apply the decision procedure for Ti to Fi. If there exists i such that Fi is unsatis-
fiable in Ti, then ϕ is unsatisfiable.

3. Equality propagation: If there exists i, j such that Fi Ti-implies an equality be-
tween variables of ϕ that is not Tj-implied by Fj , add this equality to Fj and go
to step 2.

4. If all equalities have been propagated then the formula is satisfiable.

3.1 Purification and equality propagation

Purification is a satisfiability-preserving transformation of the formula, after which
each atom is from a specific theory. In this case, we say that all the atoms are pure.
More specifically, given a formula ϕ, purification generates an equisatisfiable formula
ϕ′ as follows:

1. Let ϕ′ := ϕ.

2. For each “alien” subexpression φ in ϕ′:

• Replace φ with a new auxiliary variable aφ
• Constraint ϕ′ with aφ = φ.
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Consider the following formula:

ϕ = f(x+ g(y)) ≤ g(a) + f(b)

This formula combines the theories TE and TR. Below we show the purification of ϕ
into ϕ′ defined over TR and ϕ′′ defined over TE

Purification
ϕ′ (TR) ϕ′′ (TE)
u4 = x+ u1∧ u1 = g(y)∧
u5 ≤ u2 + u3 u2 = g(a)∧

u3 = f(b)∧
u5 = f(u4)

Observe that ϕ′ only contains atoms from TR and ϕ′′ only contains atoms from TE.
A variable is shared if it occurs in both formulas and local otherwise. For example,
{u1, u2, u3, u4, u5} are shared variables since they appear in bothϕ′ andϕ′′ and variables
{x, y, a, b} are local to either ϕ′ ({x}) or ϕ′′ ({y, a, b}).

Consider another formula:

φ = f(f(x)− f(y)) 6= f(z) ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z

We will show how determine the satisfiability of φ with the Nelson-Oppen proce-
dure. We start by doing purification and then perform equality propagation over the
shared variables.

Purification
φ′ (TR) φ′′ (TE)
x ≤ y∧ f(w) 6= f(z)∧
y + z ≤ x∧ u = f(x)∧
0 ≤ z∧ v = f(y)
w = u− v

Equality propagation
x = y∧ x = y∧
u = v∧ u = v∧
w = z w = z∧

unsat

Observe that x ≤ y, y + z ≤ x and 0 ≤ z implies that x = y and z = 0. Therefore,
we add x = y to both formulas. Since x = y this implies that f(x) = f(y) and therefore
u = v. Since u = v and w = u − v than this implies that w = 0 which means that
w = z. However, if w = z than f(w) = f(z) but φ′′ contains f(w) 6= f(z). Hence, φ is
unsatisfiable.
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L14.6 Satisfiability Modulo Theories

3.2 Convex theories

The Nelson-Oppen procedure described in the previous section is only valid for convex
theories. Note that this procedure can be modified to handle nonconvex theories but
for simplification purposes we omit that version.

Definition 7 (Convex theory). A Σ-theory T is convex if for every conjunctive Σ-formula
ϕ:

(ϕ→
n∨
i=1

xi = yi) is T -valid for some finite n > 1→

(ϕ→ xi = yi) is T -valid for some i ∈ {1, · · · , n}

where xi, yi, for i ∈ {1, · · · , n}, are some variables.

In other words, in a convex theory T , if a formula T -implies a disjunction of equali-
ties, it also T -implies at least one of these equalities separately.

An example of a noncovex theory is the theory of integers (TZ). For instance, while

x1 = 1 ∧ x2 = 2 ∧ 1 ≤ x3 ∧ x3 ≤ 2→ (x3 = x1 ∨ x3 = x2)

holds, neither

x1 = 1 ∧ x2 = 2 ∧ 1 ≤ x3 ∧ x3 ≤ 2→ x3 = x1

nor

x1 = 1 ∧ x2 = 2 ∧ 1 ≤ x3 ∧ x3 ≤ 2→ x3 = x2

holds.
Consider the following formula defined over the theory of integers (TZ) and the the-

ory of uninterpreted functions with equality (TE):

ϕ = 1 ≤ x ∧ x ≤ 2 ∧ f(x) 6= f(1) ∧ f(x) 6= f(2)

We can see that this formula is unsatisfiable since x is either 1 or 2 but f(x) 6=
1 ∧ f(x) 6= 2 which means that x has to be different than 1 and 2. However, if we ap-
ply the Nelson-Oppen procedure described in the previous section we will incorrectly
conclude that ϕ is satisfiable:

Purification
ϕ′ (TZ) ϕ′′ (TE)
1 ≤ x∧ f(x) 6= f(z)
x ≤ 2∧ f(x) 6= f(w)
z = 1
w = 2

Equality propagation
sat sat
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4 DPLL(T) framework

The Nelson-Oppen procedure allows us to solve conjunctive first-order theories. To
handle disjunction, we could convert the formula to Disjunctive Normal Form (DNF).
However, this conversion is usually too expensive and is not the most efficient way of
solving disjunctive first-order theories. In Lecture 13 we covered SAT Solvers & DPLL
and one of the strengths of the DPLL algorithm is its ability to handle disjunctions.
DPLL can be extended into a DPLL(T) framework which allows Satisfiability Modulo
Theory (SMT) solvers to handle disjunctions of first-order theories and forms the base-
line of modern SMT solvers.

The key idea behind this framework is to decompose the SMT problem into parts we
can deal with efficiently:

• Use SAT solver to cope with the Boolean structure of the formula;

• Use dedicate conjunctive theory solver to decide satisfiability in the background
theory.

4.1 Boolean abstraction

We define the Boolean abstraction of a Σ-formula ϕ recursively:

• <literal> ::= <atom>T | ¬ <atom>T

• <formula> ::= <literal> B (lT )def
= Pi, where Pi is a fresh variable

• <formula> ::= ¬ <formula> B (¬F )def
= ¬B(F )

• <formula> ::= <formula> ∧ <formula> B (F1 ∧ F2)def
= B(F1) ∧ B(F2)

• <formula> ::= <formula> ∨ <formula> B (F1 ∨ F2)def
= B(F1) ∨ B(F2)

• <formula> ::= <formula>→ <formula> B (F1 → F2)def
= B(F1)→ B(F2)

• <formula> ::= <formula>↔ <formula> B (F1 ↔ F2)def
= B(F1)↔ B(F2)

Given a Σ-formula ϕ:

ϕ : g(a) = c ∧ (f(g(a)) 6= f(c) ∨ g(a) = d) ∧ c 6= d

The Boolean abstraction of ϕ is the following:

B(F ) = B(g(a) = c) ∧ B(f(g(a)) 6= f(c) ∨ g(a) = d) ∧ c 6= d)

= B(g(a) = c) ∧ B(f(g(a)) 6= f(c) ∨ g(a) = d)) ∧ B(c 6= d)

= B(g(a) = c) ∧ B(f(g(a)) 6= f(c)) ∨ B(g(a) = d) ∧ B(c 6= d)

= P1 ∧ (¬P2 ∨ P3) ∧ ¬P4
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Note that we can also define B−1 which maps from the Boolean variables back to
the atoms in the original formula. For example B−1(P1 ∧ P3 ∧ P4) corresponds to the
formula g(a) = c ∧ g(a) = d ∧ c = d.

We call B(ϕ) an abstraction of ϕ since it is an over-approximation of ϕ with respect
to satisfiability. Observe the following properties of this over-approximation:

• If ϕ is satisfiable then B(ϕ) is also satisfiable;

• If B(ϕ) is satisfiable then ϕ is not necessarily satisfiable:

ϕ : 1 ≤ x ∧ x ≤ 2 ∧ f(x) 6= f(1) ∧ f(x) 6= f(2)

ϕ is unsatisfiable in the theory of integers (TZ) since x is either 1 or 2 but f(x) 6=
f(1) ∧ f(x) 6= f(2) implies that x must be different than 1 and 2. However, the
Boolean abstraction B(ϕ) = P1 ∧ P2 ∧ P3 ∧ P4 is satisfiable.

• If ϕ is unsatisfiable then B(ϕ) is not necessarily unsatisfiable:

ϕ : 1 ≤ x ∧ x ≤ 2 ∧ f(x) 6= f(1) ∧ f(x) 6= f(2)

The same example as for the previous case holds for this case as well. ϕ is unsat-
isfiable in the theory of integers (TZ) but B(ϕ) is satisfiable.

• If B(ϕ) is unsatisfiable then ϕ is also unsatisfiable.

4.2 Combining theory and SAT solvers

The Boolean abstraction provides us with a lazy way to solve SMT. Given a Σ-formula
ϕ, we can determine its satisfiability by performing the following procedure:

1. Construct the Boolean abstraction B(ϕ);

2. If B(ϕ) is unsatisfiable then ϕ is unsatisfiable;

3. Otherwise, get an interpretation I for B(ϕ);

4. Construct ψ =
∧n
i=1 Pi ↔ I(Pi);

5. Send B−1(ψ) to the T -solver;

6. If T -solver reports that ϕ ∧B−1(ψ) is satisfiable then ϕ is satisfiable;

7. Otherwise, update B(ϕ) := B(ϕ) ∧ ¬ψ and return to step 2.

This procedure terminates when: (i) B(ϕ) becomes unsatisfiable which implies that ϕ
is also unsatisfiable or (ii) T -solver reports that ϕ ∧ B−1(ψ) is satisfiable which implies
that B(ϕ) is satisfiable and that there exists an interpretation I that satisfies all axioms
in the theory T . Note that if ϕ ∧ B−1(ψ) is unsatisfiable we cannot terminate since
there may be another interpretation to B(ϕ) that would make ϕ ∧ B−1(ψ) satisfiable.
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Theory solver SAT solver
g(a) = c∧ P1 ∧ (¬P2 ∨ P3) ∧ ¬P4

(f(g(a)) 6= f(c) ∨ g(a) = d)∧
c 6= d

Table 1: ϕ and B(ϕ).

Theory solver SAT solver
g(a) = c∧ P1 ∧ (¬P2 ∨ P3) ∧ ¬P4

(f(g(a)) 6= f(c) ∨ g(a) = d)∧ (¬P1 ∨ P2 ∨ ¬P3 ∨ P4)
c 6= d

Table 2: Updated B(ϕ) after checking that the interpretation I = {P1,¬P2, P3,¬P4}
does not satisfy ϕ

Therefore, we need to exhaust all interpretations for B(ϕ) before deciding that ϕ is
unsatisfiable. On step 7 we add ¬ψ to B(ϕ) since if we did not, we would get the same
interpretation I for B(ϕ). We denote ¬ψ as a theory conflict clause that prevents the
SAT solver from going down the same path in future iterations.

Suppose we want to find if the Σ-formula ϕ is satisfiable:

ϕ : g(a) = c ∧ (f(g(a)) 6= f(c) ∨ g(a) = d) ∧ c 6= d

We start by building its Boolean abstraction B(ϕ):

B(ϕ) : P1 ∧ (¬P2 ∨ P3) ∧ ¬P4

Table 1 shows the step 1 of the procedure with ϕ and the corresponding Boolean
abstraction B(ϕ). Next, we query the SAT solver for an interpretation to B(ϕ). Assume
that the SAT solver returns the following interpretation I = {P1,¬P2, P3,¬P4}. We
construct ψ = (P1 ∧ ¬P2 ∧ P3 ∧ ¬P4) and send B−1(ψ) to T -solver. Note that B−1(ψ)
corresponds to:

B−1(ψ) : g(a) = c ∧ f(g(a)) 6= f(c) ∧ g(a) = d ∧ c 6= d

B−1(ψ) ∧ ϕ is unsatisfiable since if g(a) = d and g(a) = c then c = d but ϕ states that
c 6= d. Therefore, we know that this interpretation is not satisfiable but there may exist
another interpretation that satisfies ϕ. We update B(ϕ) with ¬ψ as shown in Table 2
and query the SAT solver for another interpretation.

Assume that the SAT solver returns a new interpretation I = {P1, P2, P3,¬P4}. We
construct ψ = (P1 ∧ P2 ∧ P3 ∧ ¬P4) and send B−1(ψ) to T -solver. Note that in this case
B−1 corresponds to:

B−1(ψ) : g(a) = c ∧ f(g(a)) = f(c) ∧ g(a) = d ∧ c 6= d

We can see that B−1(ψ) ∧ ϕ is unsatisfiable for the same reason as before. We update
B(ϕ) with ¬ψ as shown in Table 3 and perform another query to the SAT solver.
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L14.10 Satisfiability Modulo Theories

Theory solver SAT solver
g(a) = c∧ P1 ∧ (¬P2 ∨ P3) ∧ ¬P4

(f(g(a)) 6= f(c) ∨ g(a) = d)∧ (¬P1 ∨ P2 ∨ ¬P3 ∨ P4)
c 6= d (¬P1 ∨ ¬P2 ∨ ¬P3 ∨ P4)

Table 3: Updated B(ϕ) after checking that the interpretation I = {P1, P2, P3,¬P4} does
not satisfy ϕ.

Theory solver SAT solver
g(a) = c∧ P1 ∧ (¬P2 ∨ P3) ∧ ¬P4

(f(g(a)) 6= f(c) ∨ g(a) = d)∧ (¬P1 ∨ P2 ∨ ¬P3 ∨ P4)
c 6= d (¬P1 ∨ ¬P2 ∨ ¬P3 ∨ P4)

(¬P1 ∨ P2 ∨ P3 ∨ P4)
unsat

Table 4: Updated B(ϕ) after checking that the interpretation I = {P1,¬P2,¬P3,¬P4}
does not satisfy ϕ. B(ϕ) becomes unsatisfiable after adding the negation of I .

Assume that the SAT solver returns a new interpretation I = {P1,¬P2,¬P3,¬P4}.
We construct ψ = (P1∧¬P2∧¬P3∧¬P4) and send B−1(ψ) to T -solver. Note that in this
case B−1 corresponds to:

B−1(ψ) : g(a) = c ∧ f(g(a)) 6= f(c) ∧ g(a) 6= d ∧ c 6= d

We can see that B−1(ψ) ∧ ϕ is unsatisfiable since g(a) = c but f(g(a)) 6= f(c). We
update B(ϕ) with ¬ψ as shown in Table 4 and observe that B(ϕ) becomes unsatisfiable
after adding¬ψ. Since B(ϕ) is unsatisfiable, we can conclude that ϕ is also unsatisfiable.

4.3 Improving DPLL(T) framework

Consider the Σ-formula ϕ defined over TZ:

ϕ : 0 < x ∧ x < 1 ∧ x < 2 ∧ . . . x < 99

The Boolean abstraction B(ϕ) is the following:

B(ϕ) : P0 ∧ P1 ∧ . . . ∧ P99

Note that B(ϕ) has 298 interpretations containing P0 ∧ P1 and none of them satisfies
ϕ. The procedure described in the previous section will enumerate all of them one by
one and add a blocking conflict clause that only covers a single assignment! A potential
solution to this issue is to not treat the SAT solver as a black box but instead incremen-
tally query the theory solver as interpretations are made in the SAT solver. If we would
perform this integration then we would be able to stop after adding {0 < x, x < 1}
and would not need to explore the 298 infeasible interpretations. This can be done by
pushing the T -solver into the DPLL algorithm as follows:
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1. After Boolean Constraint Propagation (BCP), invoke the T -solver on the partial
interpretation;

2. If the T -solver returns unsatisfiable then we can stop the search of the SAT solver
and immediately add ¬ψ to Bϕ;

3. Otherwise, continue as usual until we have a new partial interpretation.

Recall the example:

ϕ : g(a) = c ∧ (f(g(a)) 6= f(c) ∨ g(a) = d) ∧ c 6= d

And its Boolean abstraction B(ϕ):

B(ϕ) : P1 ∧ (¬P2 ∨ P3) ∧ ¬P4

DPLL will begin by propagating P1 and ¬P4 since they are unit clauses. At this point
the theory axioms imply more propagations:

g(a) = c→ f(g(a)) = f(c)

g(a) = c ∧ c 6= d→ g(a) 6= d

Deciding ¬P2 or P3 would be wasteful, so we can add the theory lemmas:

(P1 → P2)

(P1 ∧ ¬P3)→ ¬P3

This procedure is called theory propagation, and if applied exhaustively can signif-
icantly prune the search by leading to Boolean interpretations that are T -satisfiable.
However, in practice doing this at every step can be expensive and theory propagation
is only applied when it is “likely” (using heuristics) to derive useful implications.

Another optimization that can be performed is to minimize the conflict clause ψ that
we add toB(ϕ) to contain only the root cause of the issue. Consider again the Σ-formula
ϕ:

ϕ : g(a) = c ∧ (f(g(a)) 6= f(c) ∨ g(a) = d) ∧ c 6= d

Notice that the interpretations I = {P1,¬P2, P3,¬P4} and I ′ = {P1, P2, P3,¬P4} had
the same root cause that lead to ϕ being unsatisfiable under that interpretation, i.e.
g(a) = d and g(a) which implies that c = d but we know that c 6= d which is a con-
tradiction. Can we find the root cause of this issue and learn something stronger than
ψ = (¬P1 ∨ P2 ∨ ¬P3 ∨ P4)? Finding a smaller unsatisfiable core to add instead of the
entire ψ can help us avoid these redundant conflicts.

Definition 8 (Minimal unsatisfiable core). Let ϕ be an unsatisfiable formula and ϕc ⊆ ϕ.
ϕc is a minimal unsatisfiable core if and only if:

• ϕc is unsatisfiable;

15-414 LECTURE NOTES MATT FREDRIKSON



L14.12 Satisfiability Modulo Theories

• Removing any element from ϕc makes ϕc satisfiable.

For I = {P1,¬P2, P3,¬P4}we have the following B−1(ϕ):

B−1(ϕ) : g(a) = c ∧ f(g(a)) 6= f(c) ∧ g(a) = d ∧ c 6= d

We can compute the minimal unsatisfiable core of B−1(ϕ) as follows.

1. Drop g(a) = c. Is the formula still unsatisfiable? No! Then it means this constraint
will be part of the minimal unsatisfiable core.

2. Drop f(g(a)) 6= f(c). Is the formula still unsatisfiable? Yes! Then it means that
we can remove this constraint from the minimal unsatisfiable core.

3. Now we have g(a) = c ∧ g(a) = d ∧ c 6= d.

4. Drop g(a) = d. Is the formula still unsatisfiable? No, then keep this constraint.

5. Drop c 6= d. Is the formula still unsatisfiable? No, then keep this constraint.

We can conclude that our minimal unsatisfiable core is g(a) = c ∧ g(a) = d ∧ c 6= d.
Therefore, we can learn the clause ψ′ = (¬P1 ∨ ¬P3 ∨ P4) instead of ψ = (¬P1 ∨ P2 ∨
¬P3 ∨ P4) which would have save one query to the SAT solver in the previous section.

5 Summary

• Nelson-Oppen procedure allow us to decide the satisfiability of a formula that
consists of a combination of conjunctive first-order theories.

• Nelson-Oppen procedure is based on two phases:

1. Purification;

2. Equality propagation of shared variables.

• The DPLL(T) framework can be used to decide the satisfiability of a formula that
consists of a combination of disjunctive first-order theories.

• We can over-approximate a formula using its Boolean abstraction.

• The key ideas behind the DPLL(T) framework is to:

– Use SAT solver to cope with the Boolean structure of the formula;

– Use dedicate conjunctive theory solver to decide satisfiability in the back-
ground theory.

• The basic DPLL(T) framework can be further improved with:

– Theory propagation;

– Minimal unsatisfiable cores.
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