
15-414: Bug Catching: Automated Program Verification

Lecture Notes on
Propositional Logic and Proofs

Matt Fredrikson

Carnegie Mellon University
Lecture 2

1 Introduction

The purpose of this lecture is to investigate the most basic of all logics: propositional
logic, which is the logic of elementary logical connectives such as and/or etc. The pri-
mary motivation in this course for the study of propositional logic is in order to get a
more precise understanding of the logical conditions typically used in program con-
tracts. Today’s lecture will not be enough to fully understand contracts, nor will propo-
sitional logic be sufficient for that purpose. But it is the most elementary preparation
regardless.

We will get into the habit of thoroughly understanding all sides of the objects we
deal with. Since we will be dealing with logical combinations such as ands and ors in
contracts, today’s lecture will right away explore the syntax of the language of propo-
sitional logic as well as its semantics and proof principles that it provides.

2 A Stroll Down Memory Lane: Recalling Contracts

Thinking back of the 15-122 Principles of Imperative Computation course, we recall that
contracts have served a valuable role in understanding programs. The experience in
that particular course emphasized their role in imperative C0 programs and focused on
informal proofs and dynamic checking of contracts. For example, Dijkstra’s algorithm
for computing the greatest common divisor of x and y needs a loop invariant and a
precondition, because Dijkstra(5,0) would not work in this C0 program:

http://www.cs.cmu.edu/~15414/index.html
http://www.cs.cmu.edu/~15122/

L2.2 Propositional Logic and Proofs

int Dijkstra(int x, int y)

//@requires x>0 && y>0;

//@ensures \result>0 && x % \result == 0 && y % \result == 0;

{

int a=x;

int b=y;

int u=b;

int v=a;

while (x!=y)

//@loop_invariant 2*a*b == u*x + v*y;

{

if (x>y) {

x=x-y; v=v+u;

} else {

y=y-x; u=u+v;

}

}

return x;

}

This algorithm uses contracts, which is a good thing. Are they all correct? Are they easy
to follow? Is it enough to show x % \result == 0 && y % \result == 0 holds at the
return statement to show the postcondition? Are x and y the right variables to use in
the @ensures clause or should we have used a and b instead? Does the postcondition
follow easily from the loop invariant?

This is all quite exciting. But the purpose of today’s lecture is not actually to get us
back into specifying or checking contracts of programs, because that is what the entire
next lecture is good for.

Instead of understanding any particular program or the meaning or effect that a con-
tract has in a particular program, we, instead, zoom in on the formulation of the condi-
tions in the contract themselves and try to understand what exactly they are.

What kind of expression is x>0 && y>0 in the @requires precondition and what
does it mean? Our layman’s reading in the 15-122 course was that the C0 contracts
@requires, @ensures, @loop invariant and @assert just expect ordinary C0 expres-
sions of type bool that are being evaluated and need to come back with value true to
successfully pass.

Well, what exactly does the expression \result mean in the @ensures postcondition?
What if the C0 expression in a contract calls a function that has the side effect of chang-
ing a data structure? Are side effects even allowed during contract checking? What
does a recursive function call mean during a contract? What exactly is the meaning of
the && operator itself? What should its meaning be? Some form of logical and. Does it
perform short-circuit evaluation? When exactly and how are the contracts evaluated?
What if an expression crashes during contract evaluation? How do we know that the
contracts are correct for a C0 program?

15-414 LECTURE NOTES MATT FREDRIKSON

Propositional Logic and Proofs L2.3

These are quite a number of subtle questions for something that we thought we had
already mastered as well as the contracts from Principles of Imperative Computation.
Maybe we should first take a step back and give the expressions within a contract a
more careful look to see how they can best be understood.

3 Propositional Logic

Definition 1 (Syntax of propositional logic). The formulas F,G of propositional logic
are defined by the following grammar (where p is an atomic proposition):

F ::= p | ¬F | F ∧G | F ∨G | F → G | F ↔ G

The way to read such a grammar is that whenever F and G are formulas then the
conjunction F ∧G also is a formula and so is the disjunction F ∨G as well as implication
F → G and bisubjunction F ↔ G. And whenever F is a formula then the negation ¬F
is a formula, too. Finally, any atomic proposition, usually written p, q, r, is a formula.
For example, this is a propositional formula:

(p ∧ q → r) ∧ (p→ q)→ (p→ r) (1)

4 Semantics of Propositional Logic

Writing down logical formulas that fit to the syntax of propositional logic is one thing,
but not particularly useful unless we also know whether the formulas are actually true
or not. Or, in fact, under which circumstances they are true or false. We cannot gener-
ally know whether the atomic propositions in a propositional logical formula are true
or false, because they are just called p, q, r, which does not tell us much about their in-
tention. But we can ask somewhere. Let’s fix a function ω, called interpretation, that tells
us the truth-value for each atomic proposition. So ω(p) = true iff atomic proposition
p is interpreted as true in interpretation ω. For example, we could fix the following
interpretation when interpreting formula (1):

ω = {q, r} (2)

By this common notation, we mean the interpretation that satisfies ω(q) = true and
ω(r) = true and interprets all other atomic propositions such as p as false .

Having fixed an interpretation ω for the atomic proposition, we can now easily evalu-
ate all propositional formulas to see whether they are true or false in that interpretation
ω of atomic propositions, because the logical operators ∧,∨,¬,→,↔ always have ex-
actly the same meaning.

Definition 2 (Semantics of propositional logic). The propositional formula F is true in
interpretation ω, written ω |= F , as inductively defined by distinguishing the shape of
formula F :

15-414 LECTURE NOTES MATT FREDRIKSON

L2.4 Propositional Logic and Proofs

1. ω |= p iff ω(p) = true for atomic propositions p

2. ω |= F ∧G iff ω |= F and ω |= G.

3. ω |= F ∨G iff ω |= F or ω |= G.

4. ω |= ¬F iff ω 6|= F , i.e. it is not the case that ω |= F .

5. ω |= F → G iff ω 6|= F or ω |= G.

6. ω |= F ↔ G iff both are true or both false, i.e., it is either the case that both ω |= F
and ω |= G or it is the case that ω 6|= F and ω 6|= G.

With this definition, it is easy to establish that formula (1) is true in interpretation (2):

ω |= (p ∧ q → r) ∧ (p→ q)→ (p→ r)

For example, the evaluation of the right-hand side formula after the implication →
proceeds as follows:

ω |= p→ r because ω |= r because ω(r) = true

Was this a coincidence? Is formula (1) only true in this particular interpretation (2) or
what happens with other interpretations of the atomic propositions?

The most exciting formulas are those that are true no matter what the interpretation
of the atomic propositions is. Such a formula is called valid and very helpful, because
it expresses a true property no matter what specific interpretation of the atomic propo-
sitions we had in mind.

Definition 3 (Validity). A formula F is called valid iff it is true in all interpretations, i.e.
ω |= F for all interpretations ω. Because any interpretation makes valid formulas true,
we also write � F iff formula F is valid. A formula F is called satisfiable iff there is an
interpretation ω in which it is true, i.e. ω |= F . Otherwise it is called unsatisfiable.

Indeed, if we try all other interpretations to evaluate formula (1) we will find that it
is always true. Let’s tabulate our results by writing down each combination of truth-
values for all atomic propositions and evaluating all subformulas of (1) according to
their semantics.

p q r p ∧ q p ∧ q → r p→ q p→ r (p ∧ q → r) ∧ (p→ q) (1)
true true true true true true true true true
false true true false true true true true true
true false true false true false true false true
false false true false true true true true true
true true false true false true false false true
false true false false true true true true true
true false false false true false false false true
false false false false true true true true true

15-414 LECTURE NOTES MATT FREDRIKSON

Propositional Logic and Proofs L2.5

Indeed, the truth-value of the formula (1) is true in all interpretations, thus, (1) is valid:

� (p ∧ q → r) ∧ (p→ q)→ (p→ r)

The only downside is all this busywork to evaluate all interpretations, which is expo-
nential in the number of variables and incredibly boring on top of that.

5 Proofs for Propositional Logic

Literally evaluating a formula in all possible interpretations is certainly one way of es-
tablishing that a propositional logical formula is valid, but it always requires exponen-
tial effort and is quite uninsightful, because it does not even provide a comprehensible
reason for the validity of the formula. The only way to check that a truth-table is con-
structed correctly for a formula is to check that it enumerates all cases of interpretations
and all its computations of truth-values are according to the semantics and that, indeed,
true is the outcome in all cases. Possible but incredibly dull. Besides, this finite enumer-
ation principle cannot work for the significantly more interesting and expressive logics
that we will be pursuing to understand programs in subsequent lectures.

The semantics considered one operator at a time. Let’s try to make the same thing
happen for proofs as well. What about a proof of a conjunction F ∧G? How could that
work?

A proof of a conjunction F∧G should consist of a proof of the left conjunct F together
with a proof of the right conjunct G, because both proofs together prove the conjunction
F ∧G. So stapling a proof of F together with a proof of G will give us a proof of F ∧G.
That was easy enough.

But what does a proof of an implication F → G consist of? It certainly isn’t a proof
of F together with a proof of G anymore. A proof of G would constitute a proof of
F → G, but such a proof is missing out on an important power. It would have been
allowed to assume F , because the formula F → G only says that F implies G, so that
G is true in case F is. If F isn’t true, then the implication F → G doesn’t say anything
about whether G is true or not. (Check back with Def. 2 if you don’t believe this).
Consequently, an unconditional proof of G certainly does establish F → G, but is a bit
much to ask for. The proof of F → G should, instead, consist of a proof of G that is
allowed to assume F . This requires the capability to manage assumptions in a proof,
which, retrospectively, should not actually come as a surprise.

For managing assumptions in a structured way, we will follow in the footsteps of
Gerhard Gentzen [Gen35], who introduced sequent calculus for the study of logic. But
it turns out that sequent calculi are also immensely useful not just for understanding
logical reasoning, but also for organizing and conducting proofs without risking to lose
track of assumptions.

15-414 LECTURE NOTES MATT FREDRIKSON

L2.6 Propositional Logic and Proofs

5.1 Simple Sequents

The first kind of sequent that we will consider (and subsequently generalize) is of the
form

Γ ` F

with the available assumptions as a list of formulas Γ as antecedent and with the formula
we want to prove from it as F. The symbol ` is called sequent turnstile and separates the
available assumptions from what we try to prove from them.

There are some sequents where we are obviously done with a proof. For example
when literally the same formula F is in the antecedent and the succedent, because F
easily follows when assuming F . So the sequent Γ, F ` F has a trivial proof. We will
later capture this thought with a proof rule id, but first consider proofs for the operators
we already started considering.

Coming back to conjunctions, proving a conjunction P ∧ Q requires proving P and
proving Q. This fact does not change when working from a list of assumptions Γ.

(∧R)
Γ ` P Γ ` Q

Γ ` P ∧Q

This proof rule ∧R expresses that all it takes to prove the conclusion Γ ` P ∧Q below the
rule bar is to prove all the premises Γ ` P and Γ ` Q above the rule bar. In the proof of
the left premise Γ ` P , the same assumptions Γ will still be available that were available
in the conclusion Γ ` P ∧Q. And likewise for the right premise.

Proving an implication P → Q, with which we had difficulties before, now simply
allows us to add the assumption P to the antecedent with the list of all available as-
sumptions and continue a proof of Q from this augmented list of assumptions:

(→R)
Γ, P ` Q

Γ ` P → Q

Reading the rule→R from bottom to top means that a proof of an implication P → Q
from a list of assumptions Γ requires us to prove Q from the assumptions Γ together
with P . If we keep on applying rule →R (and the other rules) then all our available
assumptions will ultimately land in the antecedent.

Proving a disjunction P ∨ Q is more subtle. How do we prove a disjunction? We
could prove a disjunction P ∨Q by proving the left disjunct P :

(∨R1)
Γ ` P

Γ ` P ∨Q

That works. But then what if the disjunction P ∨Q is true because the right disjunct Q
is true? Well, we could adopt yet another proof rule for disjunction that shows the right
disjunct instead:

(∨R2)
Γ ` Q

Γ ` P ∨Q

15-414 LECTURE NOTES MATT FREDRIKSON

Propositional Logic and Proofs L2.7

This would give us a pair of proof rules ∨R1 and ∨R2 to prove disjunctions. But we
will have to choose at the time of proving the disjunction P ∨ Q whether we prove it
by proving its left disjunct P with rule ∨R1 or whether we prove it by proving its right
disjunct Q with rule ∨R2. That requires a lot of attention when proving disjunctions.
Worse yet: will we always be able to tell which disjunct we will be able to prove?

In many cases, we will be able to predict which disjunct of a disjunction we will
be able to prove if we think ahead very carefully. But that is already not particularly
helpful and convenient. Worse yet, there are cases where, for principle reasons, we will
be unable to predict which disjunct of a disjunction we will prove! Suppose we are
trying to prove the formula p ∨ ¬p, which is certainly valid, because it will evaluate to
true whether or not the atomic proposition p is interpreted to be true . But when trying
to prove the law of excluded middle p ∨ ¬p, neither rule ∨R1 nor rule ∨R2 will succeed
because the whole point of the law of excluded middle is that it will evaluate to true
whether p is true or false (so ¬p is true), but we cannot generally say ahead of time
which side will be true .

Instead, what we are going to do is to keep our options open. We will record in the
sequent the fact that formulas P as well as Q were both available as formulas for us to
prove when proving the disjunction P ∨ Q by keeping both as a list on the right-hand
side of the sequent turnstile `. Of course, we might have already gather other options
that we could prove, so the disjunction proof rule is:

(∨R)
Γ ` P,Q,∆

Γ ` P ∨Q,∆

Proving a disjunction P ∨ Q from a list of assumptions Γ with a list of alternatives ∆
works by splitting the disjunction into its two options P and Q and continuing with a
proof of the alternatives P,Q,∆ from the assumptions Γ.

5.2 Sequent Calculus

To manifest this, let’s properly define what a sequent Γ ` ∆ is and what it means.

Definition 4 (Sequent). A sequent Γ ` ∆ organizes the reasoning into a list Γ of formulas
available as assumptions, called antecedent, and a list ∆ called succedent. The semantics
of sequent Γ ` ∆ is the same as that of the formula(∧

F∈Γ

F

)
→

(∨
G∈∆

G

)

In particular, proving a sequent Γ ` ∆ requires proving that the disjunction of all
succedent formulas ∆ is implied by the conjunction of all antecedent formulas Γ. For
proving a sequent Γ ` ∆, we can, thus, assume all formulas in Γ and need to show one
of the formulas in ∆, or at least show their disjunction.

This list ∆ of alternatives to prove is simply preserved in the proof rules we saw so
far:

15-414 LECTURE NOTES MATT FREDRIKSON

L2.8 Propositional Logic and Proofs

(∧R)
Γ ` P,∆ Γ ` Q,∆

Γ ` P ∧Q,∆

(→R)
Γ, P ` Q,∆

Γ ` P → Q,∆

(∨R)
Γ ` P,Q,∆

Γ ` P ∨Q,∆

For example in rule ∧R, the same succedent ∆ is still available in both premises,
because a proof of ∆ from the assumptions Γ in either premise would also prove ∆
from the assumptions Γ in the conclusion.

When we leave the development of proof rules for the bisubjunction operator↔ as
an exercise, the only remaining operator to worry about is negation ¬. How do we
prove a negation ¬P ?

We can prove a negation ¬P by assuming the converse P and going for a contra-
diction. In fact, since we may have already gathered a number of other alternatives
∆ to prove, all we need to do to prove ¬P from a list of assumptions Γ with a list of
alternatives ∆ is to prove the remaining alternatives ∆ from assuming Γ as well as the
opposite P :

(¬R)
Γ, P ` ∆

Γ ` ¬P,∆
Does this list of rules handle all operators? There’s one rule per operator, which is

a good thing. The catch is that there’s really only one rule per operator so far. If the
operators occur on the right, so in the succedent, then the respective proof rules tell us
what to do. But the implication proof rule→R is good about pushing assumptions into
the antecedent. What if it pushes a conjunction P ∧ Q into the antecedent? Is there a
proof rule to handle what happens then?

Not yet. But there should be a rule for handling the case where there’s a conjunction
P∧Q among the list of assumptions in the antecedent. In fact, for every logical operator,
there should be a right proof rule handling the case where it is the top-level operator
on the right in the succedent as well as a left proof rule handling when it appears on
the left in the antecedent.

5.3 Left Rules

When we find a conjunction P ∧ Q among the list of assumptions in the antecedent,
then we can safely split it into two separate assumptions P as well as Q:

(∧L)
Γ, P,Q ` ∆

Γ, P ∧Q ` ∆

Proving a sequent that has a conjunction P∧Q among its assumptions in the antecedent
is the same as proving it with two separate assumptions P as well as Q instead.

What happens when we have a disjunction P ∨ Q among our assumptions in the
antecedent? In that case we have no way of knowing whether P or whether Q is true.

15-414 LECTURE NOTES MATT FREDRIKSON

Propositional Logic and Proofs L2.9

All we know is that either of them is. But we still succeed with a proof if we manage
to show the sequent both when assuming P as well as when, instead, assuming Q,
because while either are possible, the assumption P ∨Q implies that one of those cases
has to apply.

(∨L)
Γ, P ` ∆ Γ, Q ` ∆

Γ, P ∨Q ` ∆

When an implication P → Q is among the assumptions in the antecedent, then we
can make use of that assumption by showing its respective assumption P and can then
assume Q instead. If we can assume P → Q and show P then we can assume Q:

(→L)
Γ ` P,∆ Γ, Q ` ∆

Γ, P → Q ` ∆

Wait a moment. The left premise does not actually show P from the assumptions Γ,
because it only shows the succedent P,∆ which is interpreted disjunctively. So it is
possible that the left premise does not show P but merely ∆. But in that case, the con-
clusion is justified as well, because it also has the antecedent ∆ as the list of alternatives
to show.

Since the operator ↔ is left as an exercise, the only remaining case is to handle a
negation ¬P among the assumptions in the antecedent. If we assume ¬P then it is also
sufficient if we can show the opposite P (recall the semantics of sequents):

(¬L)
Γ ` P,∆

Γ,¬P ` ∆

To understand, we can first pretend there would be no succedent ∆. What happens if
there is no succedent? Then the empty disjunction that it means is equivalent to the
formula false that is never true in any interpretation. In that special case, rule ¬L says
that for proving a contradiction false from assumptions ∆ and ¬P , it is sufficient to
prove the opposite P from the remaining assumptions Γ.

5.4 Closing and Forking

The above proof rules excel at splitting operators off of propositional logical formulas.
But they never actually prove anything on their own except simplifying all formulas
until only atomic propositions are left. What is missing is the observation that a sequent
can be proved easily when the same formula P is in the antecedent and succedent with
the identity proof rule called id:

(id)
Γ, P ` P,∆

Whenever we find the same formula P in the antecedent and succedent, we can use
rule id to prove that sequent without any further questions (no premise, i.e. no more
remaining subgoals).

15-414 LECTURE NOTES MATT FREDRIKSON

L2.10 Propositional Logic and Proofs

Another insightful proof rule is the cut proof rule, which enables us to first prove an
arbitrary formula C on the left premise and then assume C on the right premise.

(cut)
Γ ` C,∆ Γ, C ` ∆

Γ ` ∆

Think of C as a lemma that is proved in the left premise and then assumed to hold in
the right premise. The twist is again that the left premise does not necessarily prove
C but might also settle for proving another alternative in the remaining succedent ∆,
but that also establishes the succedent ∆ of the conclusion. The primary purpose of
the cut rule is for ingenious theoretical studies of reasoning [Gen35] as well as to find
clever shortcuts in practical proofs by first proving a lemma C that subsequently helps
multiple times in the remaining proof. It plays a crucial role in constructive logics, too.

All these sequent calculus proof rules are sound, that is, if all their premises are valid,
then their conclusion is valid. Especially if there are no premises any more because we
were able to use the identity proof rule id on all premises, then the conclusion is valid,
which is what we were hoping to achieve with a proof.

5.5 Conducting Sequent Calculus Proofs

As an example, let’s prove formula (1). Sequent calculus proofs are conducted in a bit
of a funny way by starting with the conjecture at the bottom

` (p ∧ q → r) ∧ (p→ q)→ (p→ r)

and then working our way upwards by applying proof rules to the remaining sequents.
The reason why we work like that is that in (sound!) sequent calculus proof rules valid-
ity of all premises implies validity of the conclusion. So if we start with our conjecture
at the bottom and work our way upwards, then if we are able to prove all premises then
the conclusion at the bottom will be valid, too. We apply sequent calculus rules from
the bottom to the top but, when a proof is done, their soundness makes validity inherit
from the top to the bottom.

Enough said. Let’s prove formula (1) in sequent calculus:

∗
idp ∧ q → r, p ` p, r

∗
idq, p ` p, r

∗
idq, p ` q, r

∧R q, p ` p ∧ q, r

∗
idr, q, p ` r

→L p ∧ q → r, q, p ` r
→L p ∧ q → r, p→ q, p ` r
→R p ∧ q → r, p→ q ` p→ r
∧L (p ∧ q → r) ∧ (p→ q) ` p→ r
→R ` (p ∧ q → r) ∧ (p→ q)→ (p→ r)

15-414 LECTURE NOTES MATT FREDRIKSON

Propositional Logic and Proofs L2.11

6 Soundness

Having conducted a sequent calculus proof, the most pressing question is what a proof
proves. Of course, as we already alluded to before, a proof in a sound proof calculus
implies the validity of the conclusion.

Definition 5 (Soundness of a proof rule). A sequent calculus proof rule

Γ1 ` ∆1 . . . Γn ` ∆n

Γ ` ∆

is sound iff the validity of all premises implies the validity of the conclusion:

if � (Γ1 ` ∆1) and . . . and � (Γn ` ∆n) then � (Γ ` ∆)

Recall from Def. 4 that the meaning of the sequent Γ ` ∆ is the same as that of the
formula

(∧
F∈Γ F

)
→
(∨

G∈∆ G
)
.

(∧R)
Γ ` P,∆ Γ ` Q,∆

Γ ` P ∧Q,∆

(∨R)
Γ ` P,Q,∆

Γ ` P ∨Q,∆

(→R)
Γ, P ` Q,∆

Γ ` P → Q,∆

(¬R)
Γ, P ` ∆

Γ ` ¬P,∆

(id)
Γ, P ` P,∆

(∧L)
Γ, P,Q ` ∆

Γ, P ∧Q ` ∆

(∨L)
Γ, P ` ∆ Γ, Q ` ∆

Γ, P ∨Q ` ∆

(→L)
Γ ` P,∆ Γ, Q ` ∆

Γ, P → Q ` ∆

(¬L)
Γ ` P,∆

Γ,¬P ` ∆

(cut)
Γ ` C,∆ Γ, C ` ∆

Γ ` ∆

Figure 1: Sequent calculus proof rules for propositional logic

Lemma 6 (Soundness of propositional logic proof rules). All propositional logic proof rules
(summarized again in Fig. 1), are sound.

Proof. It is crucial to prove soundness for all proof rules. We will, nevertheless, only
prove it for one rule and leave the others as exercises. But we will prove that rule with
exceeding care.

∧R That proof rule ∧R is sound can be shown as follows. Assume that both of its
premises Γ ` P,∆ and Γ ` Q,∆ are valid, i.e. both (

∧
F∈Γ F)→ P∨(

∨
G∈∆ G) and

(
∧

F∈Γ F) → Q ∨ (
∨

G∈∆ G) are true in all interpretations. We need to show that
the conclusion Γ ` P ∧Q,∆ is then also valid, i.e. � (Γ ` P ∧Q,∆), which means
that (

∧
F∈Γ F)→ (P∧Q)∨(

∨
G∈∆ G) is true in all interpretations. Consider any in-

terpretation ω and show that ω |= (
∧

F∈Γ F)→ (P ∧Q) ∨ (
∨

G∈∆ G). If any of the

15-414 LECTURE NOTES MATT FREDRIKSON

L2.12 Propositional Logic and Proofs

antecedent formulas F ∈ Γ is false in ω (ω 6|= F) or any of the remaining succe-
dent formulas G ∈ ∆ is true (ω |= G), then ω |= (

∧
F∈Γ F)→ (P ∧Q) ∨ (

∨
G∈∆ G).

Otherwise, all antecedent formulas in Γ are true ω |=
∧

F∈Γ F and all ∆ formulas
are false ω 6|=

∨
G∈Γ G.

By premise, ω |= (
∧

F∈Γ F)→ P ∨ (
∨

G∈∆ G) and ω |= (
∧

F∈Γ F)→ Q ∨ (
∨

G∈∆ G).
Since antecedents in Γ are true and succedents in ∆ false in ω, this implies ω |= P
and ω |= Q. By Def. 2, these imply ω |= P ∧Q, which implies that the conclusion
is true in ω, i.e. ω |= (

∧
F∈Γ F)→ (P ∧Q) ∨ (

∨
G∈∆ G).

In fact, the prelude of the soundness argument is common to all proof rules so that
one usually just assumes right away without loss of generality that the common an-
tecedent Γ is true while the common succedent ∆ false in the current interpretation
ω.

Now that all proof rules of propositional logic are sound it is easy to see that the
whole proof calculus is sound, because a proof is entirely built by applying sound proof
rules so validity of all premises (of which there are none in a completed proof) implies
validity of the conclusion. Because this is so important and we want to practice the
important proof principle of induction, we will show this explicitly.

Theorem 7 (Soundness of propositional logic). The sequent calculus of propositional logic
is sound, i.e. it only proves valid formulas. That is, if ` P has a proof in the propositional
sequent calculus, then P is valid, i.e. � P .

Proof. What we need to show is that if ` P is the conclusion of a completed sequent
calculus proof, then P is valid, i.e. � P . A proof of the sequent ` P will consist of proofs
of sequents of the more general shape Γ ` ∆. So we instead prove the more general
statement that a proof of Γ ` ∆ implies � (Γ ` ∆). We will prove this by induction on
the structure of the proof. That is, we will prove it for the smallest possible proofs. And
then, assuming that the proofs of the smaller pieces of a proof have valid conclusions,
we will show that one more proof step preserves validity.

1. The only proofs with just 1 proof step are of the form

id
∗

Γ, P ` P,∆

Its conclusion is valid, because assumption P in the antecedent trivially implies
P in the succedent.

2. Consider any proof ending with a proof step of this form:

Γ1 ` ∆1 . . . Γn ` ∆n

Γ ` ∆
(3)

By induction hypothesis, we can assume that the (smaller!) proofs of the premises
Γ1 ` ∆1 and . . . Γn ` ∆n already imply the validity of their respective conclusions
so � (Γ1 ` ∆1) and . . .� (Γn ` ∆n).

15-414 LECTURE NOTES MATT FREDRIKSON

Propositional Logic and Proofs L2.13

The proof rule used in the proof step (3) must have been one of the proof rules of
the sequent calculus of propositional logic. All these sequent calculus proof rules
of propositional logic are sound by Lemma 6. Consequently, � (Γ ` ∆), so the
conclusion of the proof (3) is valid.

Soundness is one thing, and most crucial for any correct reasoning. But since proposi-
tional logic is so simple, it enjoys other pleasant properties. It is also the case that every
valid propositional logic formula will be provable from the sequent calculus proof rules
in Fig. 1, which is called completeness.

Theorem 8 (Completeness of propositional logic). The sequent calculus of propositional
logic is complete, i.e. it proves all valid formulas. That is, if P is valid, so � P then ` P has a
proof in the propositional sequent calculus.

In fact, because propositional logic is so simple, it is perfectly decidable whether a
propositional logical formula is valid.

Theorem 9 (Decidability of propositional logic). Propositional logic is decidable, i.e. there
is an algorithm that accepts any propositional logical formula as input and correctly outputs
“valid” or “not valid” in finite time.

How could such an algorithm possibly work? Well how to do that as efficiently
as possible is the purpose of a SAT solver, which we will learn more about in a later
lecture. That it is possible at all, however, is absolutely trivial. All that the algorithm
needs to do is write down every interpretation with any true/false assignment for all
the (finitely many!) atomic propositions in the logical formula and check whether it
evaluates to true according to Def. 2. Easy, but boring. And of inherently exponential
effort, because there are exponentially many interpretations to consider (in the number
of the variables). This is why SAT solvers try to be a lot more clever about it. Whether
SAT solvers have a chance to be inherently faster than exponential in the worst-case is,
of course, the exciting open P-vs-NP problem.

Why do SAT solvers have such a funny name? Well, because they solve the question
whether a propositional logical formula is satisfiable. What does that have to do with
validity? If a formula is satisfiable, what does that tell us about validity? If a formula is
valid, what does that tell us about satisfiability?

Of course, if a formula is valid, so true in all interpretations, it is clearly satisfiable so
true in at least one interpretation. But the converse is totally wrong. Yet if the negation
¬P of the formula P is satisfiable, then P itself cannot possibly be valid, because there
apparently is an interpretation ω in which its negation ¬P is already true. And it is
quite impossible for ω |= ¬P and ω |= P to hold at the same time. Indeed, the formula
P is valid if and only if its negation ¬P is unsatisfiable.

Lemma 10. A formula P is valid if and only if its negation ¬P is unsatisfiable.

This lemma would be an incredibly boring observation if it wasn’t for the fact that it
explains why SAT solvers are useful for checking the validity of propositional logical
formulas.

15-414 LECTURE NOTES MATT FREDRIKSON

L2.14 Propositional Logic and Proofs

7 Summary

The proof rules for propositional logic that this lecture discussed are summarized in
Fig. 1 on p. 11. Other important concepts from this lecture that will be with us in the
future are soundness and the principles of structural induction employed in proving it.

References

[Gen35] Gerhard Gentzen. Untersuchungen über das logische Schließen. I. Math. Zeit.,
39(2):176–210, 1935.

15-414 LECTURE NOTES MATT FREDRIKSON

	Introduction
	A Stroll Down Memory Lane: Recalling Contracts
	Propositional Logic
	Semantics of Propositional Logic
	Proofs for Propositional Logic
	Simple Sequents
	Sequent Calculus
	Left Rules
	Closing and Forking
	Conducting Sequent Calculus Proofs

	Soundness
	Summary

