Bug Catching: Automated Program Verification

15414/15614 Spring 2020
Lecture 1: Introduction

Matt Fredrikson

January 14, 2020

Matt Fredrikson Model Checking

Course Staff

| b
Matt Fredrikson Di Wang Ryan Chen
Instructor TA TA

Matt Fredrikson Model Checking 2/22

» April, 2014 OpenSSL announced
critical vulnerability in their
implementation of the Heartbeat
Extension.

Matt Fredrikson Model Checking

3/22

» April, 2014 OpenSSL announced
critical vulnerability in their
implementation of the Heartbeat
Extension.

» “The Heartbleed bug allows anyone on
the Internet to read the memory of the
systems protected by the vulnerable
versions of the OpenSSL software.”

Matt Fredrikson Model Checking 3/22

» April, 2014 OpenSSL announced
critical vulnerability in their
implementation of the Heartbeat
Extension.

» “The Heartbleed bug allows anyone on
the Internet to read the memory of the
systems protected by the vulnerable
versions of the OpenSSL software.”

» “..this allows attackers to eavesdrop
on communications, steal data directly
from the services and users and to
impersonate services and users.”

Matt Fredrikson Model Checking 3/22

Heartbleed, explained

SERVER, ARE YOU STiLL THERE?
IFSQREPLY *POTATO" (6 LETTERS).

ser Meg wants these 6 letters: POTRIO.

-]

Image source: Randall Munroe, xkcd.com

Matt Fredrikson Model Checking 4722

Heartbleed, explained

ser Meq wants these 6 letters: POTATO.

1 =n

o)
0
o

Image source: Randall Munroe, xkcd.com

Matt Fredrikson Model Checking 4722

Heartbleed, explained

SERVER, ARE YOU STILL THERE?
IF 50, REPLY "BIRD" (4 LETTERS).

J

Image source: Randall Munroe, xkcd.com

Matt Fredrikson Model Checking 4722

Heartbleed, explained

these 4 letters: BIRD.

o

Image source: Randall Munroe, xkcd.com

Matt Fredrikson Model Checking 4722

Heartbleed, explained

SERVER, ARE YOU STiLL THERE?
IFS0,REPLY "HAT" (500 LETTERS),

/

Image source: Randall Munroe, xkcd.com

Matt Fredrikson Model Checking 4722

Heartbleed, explained

. Ewve (administrator) wan
ts to set server’s master key to 148
350385347, Imabel wants pages aboot "
anakes but not too long”. User Haren
werts o change acoount passmord o |

Meg wants these 500 letters: HAT.

Image source: Randall Munroe, xkcd.com

Matt Fredrikson

del Checking

4722

Algorithms vs. code

O O N WU RA W N o

1
12
13
14
15

16

int binarySearch(int key, int[] a, int n) {

int low = 0;
int high = n;

while (low < high) {
int mid = (low + high) / 2;

if (a[mid] == key) return mid; // key found
else if(almid] < key) {
low = mid + 1;
} else {
high = mid;
}
}
return -1; // key not found.

Matt Fredrikson Model Checking 5/22

Code Matters

This is a correct binary search algorithm.

Matt Fredrikson Model Checking 6/22

Code Matters

This is a correct binary search algorithm.

But what if low + high > 23 — 1?

Matt Fredrikson Model Checking 6/22

Code Matters

This is a correct binary search algorithm.
But what if low + high > 23 — 1?

Thenmid = (low + high) / 2 becomes negative

Matt Fredrikson Model Checking 6/22

This is a correct binary search algorithm.
But what if low + high > 23 — 1?

Thenmid = (low + high) / 2 becomes negative
» Best case: ArrayIndexOutOfBoundsException

Matt Fredrikson Model Checking 6/22

This is a correct binary search algorithm.
But what if low + high > 23 — 1?

Thenmid = (low + high) / 2 becomes negative
» Best case: ArrayIndexOutOfBoundsException
» Worst case: undefined behavior

Matt Fredrikson Model Checking 6/22

This is a correct binary search algorithm.
But what if low + high > 23 — 1?

Thenmid = (low + high) / 2 becomes negative
» Best case: ArrayIndexOutOfBoundsException
» Worst case: undefined behavior

Algorithm may be correct. But we run code, not algorithms.

Matt Fredrikson Model Checking 6/22

How do we fix it?

The culprit: mid = (low + high) / 2

Matt Fredrikson Model Checking 7122

How do we fix it?

The culprit: mid = (low + high) / 2

Need to make sure we don't overflow at any point

Matt Fredrikson Model Checking 7122

How do we fix it?

The culprit: mid = (low + high) / 2
Need to make sure we don't overflow at any point

Solution: mid = low + (high - low)/2

Matt Fredrikson Model Checking 7122

O O N WU RA W N o

1
12
13
14
15

16

int binarySearch(int key, int[] a, int n) {

int low = 0;
int high = n;

while (low < high) {
int mid = low + (high - low) / 2;

if (a[mid] == key) return mid; // key found
else if(almid] < key) {
low = mid + 1;
} else {
high = mid;
}
}
return -1; // key not found.

Matt Fredrikson Model Checking 8/22

1 int binarySearch(int key, int[] a, int n)
> //@requires 0 <= n &4 n <= \length(4);

3 {

4 int low = 0;

5 int high = n;

6

7 while (low < high) {

8 int mid = low + (high - low) / 2;
9

10 if (a[mid] == key) return mid; // key found
1 else if(al[mid] < key) {

12 low = mid + 1;

13 } else {

14 high = mid;

15 }

16 ¥

17 return -1; // key not found.

18 }

Matt Fredrikson Model Checking 8/22

1 int binarySearch(int key, int[] a, int n)

2 //@requires 0 <= n &% n <= \length(a);

/*@ensures (\result == -1 & !is_in(key, 4, 0, n))
e /] (0 <= \result, \result < n

[&3 Al[\result] == key); ©@*/

w

int low = O0;
int high = n;

© w o v A
~

10 while (low < high) {
11 int mid = low + (high - low) / 2;
12

13 if (a[mid] == key) return mid; // key found
14 else if(al[mid] < key) {

15 low = mid + 1;

16 } else {

17 high = mid;

18 }

19 }

20 return -1; // key not found.

21}

Matt Fredrikson Model Checking 8/22

1 int binarySearch(int key, int[] a, int n)

2 //@requires 0 <= n &% n <= \length(a);

3 //@requires is_sorted(a, 0, n);

4 /*@ensures (\result == -1 & !is_in(key, A, 0, n))
e /| (0 <= \result, \result < n

@ &84 Al\result] == key); @*/

int low = O0;
int high = n;

© ® N o u
-~

1 while (low < high) {

12 int mid = low + (high - low) / 2;
13

14 if (almid] == key) return mid; // key found
15 else if(al[mid] < key) {

16 low = mid + 1;

17 } else {

18 high = mid;

19 }

20 }

21 return -1; // key not found.

2 }

Matt Fredrikson Model Checking 8/22

How do we know if it's correct?

Matt Fredrikson Model Checking 9/22

How do we know if it's correct?

One solution: testing

Matt Fredrikson Model Checking 9/22

How do we know if it's correct?

One solution: testing
» Probably incomplete — uncertain answer
» Exhaustive testing not feasible

Matt Fredrikson Model Checking 9/22

How do we know if it's correct?

One solution: testing
» Probably incomplete — uncertain answer
» Exhaustive testing not feasible

Another: code review

Matt Fredrikson Model Checking 9/22

How do we know if it's correct?

One solution: testing
» Probably incomplete — uncertain answer
» Exhaustive testing not feasible

Another: code review
» Correctness definitely important, but not the only thing
» Humans are fallable, bugs are subtle
» What's the specification?

Matt Fredrikson Model Checking 9/22

How do we know if it's correct?

One solution: testing
» Probably incomplete — uncertain answer
» Exhaustive testing not feasible

Another: code review
» Correctness definitely important, but not the only thing
» Humans are fallable, bugs are subtle
» What's the specification?

Better: prove correctness

Specification <> Implementation

Matt Fredrikson Model Checking 9/22

How do we know if it's correct?

One solution: testing
» Probably incomplete — uncertain answer
» Exhaustive testing not feasible

Another: code review
» Correctness definitely important, but not the only thing
» Humans are fallable, bugs are subtle
» What's the specification?

Better: prove correctness

Specification <> Implementation

» Specification must be precise
» Meaning of code must be well-defined
» Reasoning must be sound

Matt Fredrikson Model Checking 9/22

Algorithmic Approaches

Formal proofs are tedious

Automatic methods can:
» Check our work
» Fill in low-level details
» Give diagnostic info
» Verify everything for us

This is what you will learn!
> Make use of these methods
» How (and when) they work Image source: Daniel Kroening & Ofer

Strichman, Decision Procedures

Matt Fredrikson Model Checking 10/22

Course objectives

» Identify and formalize program correctness

» Understand language semantics

» Apply mathematical reasoning to program correctness

» Learn how to write correct software, from beginning to end
» Use automated tools that assist verifying your code

» Understand how verification tools work

Matt Fredrikson Model Checking 11/22

Reasoning about correctness

Functional Correctness

» Specification
1 int[] array_copy(int[] A, int n)
» Proof » //@requires 0 <= n & n <= \length(A);
3 //@ensures \length(\result) == n;
Specify behavior with logic o

» Declarative

int[] B = alloc_array(int, n);

6
7 for (int i = 0; 1 < n; i++)
8
9

» Precise //@loop_invariant 0 <= i;
{
.) o BLi] = A[il;
Systematic proof techniques 0}
. . 12
» Derived from semantics » return B;
» Exhaustive proof rules u}

» Automatable*

Matt Fredrikson Model Checking 12/22

Why3

Deductive verification platform
» Programming language
» Verification toolchain

Rich specification language
» Pre- and post-conditions, assertions
» Pure mathematical functions
» Termination metrics

Programmer writes specification, partial annotations

Compiler proves correctness automatically!

Matt Fredrikson Model Checking 13/22

Automated Verifiers

Systems that prove that programs match their specifications

Basic idea:

1. Translate programs into
proof obligations

2. Encode proof obligations as
satisfiability

3. Solve using a decision
procedure

Matt Fredrikson Model Checking 14/22

Automated Verifiers

Systems that prove that programs match their specifications

Problem is undecidable!
1. Require annotations Basic idea:

2. Relieve manual burden by 1. Translate programs into
inferring some annotations proof obligations

2. Encode proof obligations as
satisfiability

3. Solve using a decision
procedure

Matt Fredrikson Model Checking 14/22

Automated Verifiers

Systems that prove that programs match their specifications

Problem is undecidable!

1. Require annotations Basic idea:
2. Relieve manual burden by 1. Translate programs into
inferring some annotations proof obligations
. 2. Encode proof obligations as
Verifiers are complex systems satisfiability
» We'll deep-dive into selected 3. Solve using a decision
components ' procedure
» Understand “big picture” for

the rest

Matt Fredrikson Model Checking 14/22

Model Checking

Fully-automatic techniques for finding bugs (or proving their absence)

» Specifications written in
propositional temporal logic

> e .
Verification by exhaustive state [code J [spec J
space search

» Diagnostic counterexamples \v /

model
checker
counter-
v

example

Matt Fredrikson Model Checking 15/22

Model Checking

Fully-automatic techniques for finding bugs (or proving their absence)

» Specifications written in
propositional temporal logic

> e ,
Verification by exhaustive state [code J [spec J
space search

» Diagnostic counterexamples \v /

» No proofs! model
checker

—

v counter-
example

Matt Fredrikson Model Checking 15/22

Model Checking

Fully-automatic techniques for finding bugs (or proving their absence)

» Specifications written in
propositional temporal logic

> e ,
Verification by exhaustive state [code J [spec J
space search

» Diagnostic counterexamples \v /

» No proofs! model
» Downside: “State explosion” Ch(éCliv
counter-

v example

Matt Fredrikson Model Checking 15/22

Model Checking

Fully-automatic techniques for finding bugs (or proving their absence)

» Specifications written in
propositional temporal logic

> e ,
Verification by exhaustive state [code J [spec J
space search

» Diagnostic counterexamples \ /

» No proofs! model
» Downside: “State explosion” checker
107% atoms 10590090 states / \v

v counter-
example

Matt Fredrikson Model Checking 15/22

Model Checking

Clever ways of dealing with state explosion:

Matt Fredrikson Model Checking 16/22

Model Checking

Clever ways of dealing with state explosion:
> Partial order reduction
» Bounded model checking
» Symbolic representations
» Abstraction & refinement

Matt Fredrikson Model Checking 16/22

Model Checking

Clever ways of dealing with state explosion:
> Partial order reduction
» Bounded model checking
» Symbolic representations
» Abstraction & refinement

Now widely used for verification & bug-finding:
» Hardware, software, protocols, ...
» Microsoft, Intel, Amazon, Google, NASA, ...

Matt Fredrikson Model Checking 16/22

Model Checking

Clever ways of dealing with state explosion:
> Partial order reduction
» Bounded model checking
» Symbolic representations
» Abstraction & refinement

Now widely used for verification & bug-finding:

Ed Clarke
» Hardware, software, protocols, ... Turing Award,

» Microsoft, Intel, Amazon, Google, NASA, ... 2007

Matt Fredrikson Model Checking 16/22

5 labs
Breakdown: Weekly written homework
> 40% labs In-class exams, closed-book
» 25% written homework
» 30% exams (15% each, Participation:
midterm and final) » Come to lecture
» 5% participation » Answer questions (in class and

on Piazza!)
» Contribute to discussion

Matt Fredrikson Model Checking 17122

For the labs, you will:
» Implement some functionality
» Specify correctness for that functionality
» Use Why3 to prove it correct

Matt Fredrikson Model Checking 18/22

For the labs, you will:
» Implement some functionality
» Specify correctness for that functionality
» Use Why3 to prove it correct

Most important criterion is correctness.

Matt Fredrikson Model Checking 18/22

For the labs, you will:
» Implement some functionality
» Specify correctness for that functionality
» Use Why3 to prove it correct

Most important criterion is correctness.

Full points when you provide the following
» Correct implementation
» Correct specification
» Correct annotations
» Sufficient annotations for verification

Matt Fredrikson Model Checking 18/22

For the labs, you will:
» Implement some functionality
» Specify correctness for that functionality
» Use Why3 to prove it correct

Most important criterion is correctness.

Full points when you provide the following
» Correct implementation
» Correct specification
» Correct annotations
» Sufficient annotations for verification

Partial credit depending on how many of these you achieve

Clarity & conciseness is necessary for partial credit!

Matt Fredrikson Model Checking 18/22

Labs are intended to build proficiency in:
» Writing good specifications
» Applying course principles to practice
» Making effective use of automated tools
» Writing useful & correct code

Matt Fredrikson Model Checking 19/22

Labs are intended to build proficiency in:
» Writing good specifications
» Applying course principles to practice
» Making effective use of automated tools
» Writing useful & correct code

Gradual progression to sophistication:

1. Familiarize yourself with Why3
Implement and prove something
Work with more complex data structures
Implement and prove something really interesting
Optimize your implementation, still verified

ukh W

Matt Fredrikson Model Checking 19/22

Written homeworks focus on theory and fundamental skills

Matt Fredrikson Model Checking 20/22

Written homeworks focus on theory and fundamental skills

Grades are based on:
» Correctness of your answer
» How you present your reasoning

Matt Fredrikson Model Checking 20/22

Written homeworks focus on theory and fundamental skills

Grades are based on:
» Correctness of your answer
» How you present your reasoning

Strive for clarity & conciseness
» Show each step of your reasoning
» State your assumptions
» Answers without these — no points

Matt Fredrikson Model Checking 20/22

Late Policy

No late days on written homework
» Not intended to be time-intensive
» 20% deduction for each day past deadline

Matt Fredrikson Model Checking 21/22

Late Policy

No late days on written homework
» Not intended to be time-intensive
» 20% deduction for each day past deadline

Can earn back missed points for proofs on labs
» Must submit original lab by the deadline
» Resubmit once within three days of deadline

» If proof is complete & correct (read: compiler accepts it), earn
back points only on the proof

Matt Fredrikson Model Checking 21/22

Late Policy

No late days on written homework
» Not intended to be time-intensive
» 20% deduction for each day past deadline

Can earn back missed points for proofs on labs
» Must submit original lab by the deadline
» Resubmit once within three days of deadline

» If proof is complete & correct (read: compiler accepts it), earn
back points only on the proof

Regrades
» No push-button regrades
» Discuss suspected error with us in person
» We will regrade the entire assignment

Matt Fredrikson Model Checking 21/22

Website: http://www.cs.cmu.edu/~15414

Course staff contact: Piazza or
15414-staff@lists.andrew.cmu.edu
Lecture: Tuesdays & Thursdays, 12:00-1:20pm GHC 4307

Matt Fredrikson
» Location: CIC 2126
» Office Hours: Thursdays 4pm

Di Wang, Ryan Chen
» Office Hours: TBD

Matt Fredrikson Model Checking 22/22

http://www.cs.cmu.edu/~15414

