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Bad code

I April, 2014 OpenSSL announced
critical vulnerability in their
implementation of the Heartbeat
Extension.

I “The Heartbleed bug allows anyone on
the Internet to read the memory of the
systems protected by the vulnerable
versions of the OpenSSL software.”

I “...this allows attackers to eavesdrop
on communications, steal data directly
from the services and users and to
impersonate services and users.”
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Heartbleed, explained

Image source: Randall Munroe, xkcd.com
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Algorithms vs. code

1 int binarySearch(int key, int[] a, int n) {
2 int low = 0;
3 int high = n;
4

5 while (low < high) {
6 int mid = (low + high) / 2;
7

8 if(a[mid] == key) return mid; // key found
9 else if(a[mid] < key) {
10 low = mid + 1;
11 } else {
12 high = mid;
13 }
14 }
15 return -1; // key not found.
16 }
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Code Matters

This is a correct binary search algorithm.

But what if low + high > 231 − 1?

Then mid = (low + high) / 2 becomes negative
I Best case: ArrayIndexOutOfBoundsException
I Worst case: undefined behavior

Algorithm may be correct. But we run code, not algorithms.
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How do we fix it?

The culprit: mid = (low + high) / 2

Need to make sure we don’t overflow at any point

Solution: mid = low + (high - low)/2
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The fix
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1 int binarySearch(int key, int[] a, int n)
2 //@requires 0 <= n && n <= \length(a);
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How do we know if it’s correct?

One solution: testing
I Probably incomplete −→ uncertain answer
I Exhaustive testing not feasible

Another: code review
I Correctness definitely important, but not the only thing
I Humans are fallable, bugs are subtle
I What’s the specification?

Better: prove correctness

Specification ⇐⇒ Implementation

I Specification must be precise
I Meaning of code must be well-defined
I Reasoning must be sound
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Algorithmic Approaches

Formal proofs are tedious

Automatic methods can:
I Check our work
I Fill in low-level details
I Give diagnostic info
I Verify everything for us

This is what you will learn!
I Make use of these methods
I How (and when) they work Image source: Daniel Kroening & Ofer

Strichman, Decision Procedures
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Course objectives

I Identify and formalize program correctness

I Understand language semantics

I Apply mathematical reasoning to program correctness

I Learn how to write correct software, from beginning to end

I Use automated tools that assist verifying your code

I Understand how verification tools work
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Reasoning about correctness

Functional Correctness
I Specification
I Proof

Specify behavior with logic
I Declarative
I Precise

Systematic proof techniques
I Derived from semantics
I Exhaustive proof rules
I Automatable∗
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Why3

Deductive verification platform
I Programming language
I Verification toolchain

Rich specification language
I Pre- and post-conditions, assertions
I Pure mathematical functions
I Termination metrics

Programmer writes specification, partial annotations

Compiler proves correctness automatically!
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Automated Verifiers

Systems that prove that programs match their specifications

Problem is undecidable!
1. Require annotations
2. Relieve manual burden by

inferring some annotations

Verifiers are complex systems
I We’ll deep-dive into selected

components
I Understand “big picture” for

the rest

Basic idea:
1. Translate programs into

proof obligations
2. Encode proof obligations as

satisfiability
3. Solve using a decision

procedure
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Model Checking

Fully-automatic techniques for finding bugs (or proving their absence)

I Specifications written in
propositional temporal logic

I Verification by exhaustive state
space search

I Diagnostic counterexamples

I No proofs!
I Downside: “State explosion”
1070 atoms 10500000 states

code spec

model
checker

X counter-
example
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Model Checking

Clever ways of dealing with state explosion:

I Partial order reduction
I Bounded model checking
I Symbolic representations
I Abstraction & refinement

Now widely used for verification & bug-finding:
I Hardware, software, protocols, …
I Microsoft, Intel, Amazon, Google, NASA, …

Ed Clarke
Turing Award,

2007
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Grading

Breakdown:
I 40% labs
I 25% written homework
I 30% exams (15% each,

midterm and final)
I 5% participation

5 labs

Weekly written homework

In-class exams, closed-book

Participation:
I Come to lecture
I Answer questions (in class and

on Piazza!)
I Contribute to discussion
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Grading

For the labs, you will:
I Implement some functionality
I Specify correctness for that functionality
I Use Why3 to prove it correct

Most important criterion is correctness.

Full points when you provide the following
I Correct implementation
I Correct specification
I Correct annotations
I Sufficient annotations for verification

Partial credit depending on how many of these you achieve

Clarity & conciseness is necessary for partial credit!
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Labs

Labs are intended to build proficiency in:
I Writing good specifications
I Applying course principles to practice
I Making effective use of automated tools
I Writing useful & correct code

Gradual progression to sophistication:
1. Familiarize yourself with Why3
2. Implement and prove something
3. Work with more complex data structures
4. Implement and prove something really interesting
5. Optimize your implementation, still verified
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Grading

Written homeworks focus on theory and fundamental skills

Grades are based on:
I Correctness of your answer
I How you present your reasoning

Strive for clarity & conciseness
I Show each step of your reasoning
I State your assumptions
I Answers without these −→ no points
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Late Policy

No late days on written homework
I Not intended to be time-intensive
I 20% deduction for each day past deadline

Can earn back missed points for proofs on labs
I Must submit original lab by the deadline
I Resubmit once within three days of deadline
I If proof is complete & correct (read: compiler accepts it), earn

back points only on the proof
Regrades
I No push-button regrades
I Discuss suspected error with us in person
I We will regrade the entire assignment

Matt Fredrikson Model Checking 21 / 22



Late Policy

No late days on written homework
I Not intended to be time-intensive
I 20% deduction for each day past deadline

Can earn back missed points for proofs on labs
I Must submit original lab by the deadline
I Resubmit once within three days of deadline
I If proof is complete & correct (read: compiler accepts it), earn

back points only on the proof

Regrades
I No push-button regrades
I Discuss suspected error with us in person
I We will regrade the entire assignment

Matt Fredrikson Model Checking 21 / 22



Late Policy

No late days on written homework
I Not intended to be time-intensive
I 20% deduction for each day past deadline

Can earn back missed points for proofs on labs
I Must submit original lab by the deadline
I Resubmit once within three days of deadline
I If proof is complete & correct (read: compiler accepts it), earn

back points only on the proof
Regrades
I No push-button regrades
I Discuss suspected error with us in person
I We will regrade the entire assignment

Matt Fredrikson Model Checking 21 / 22



Logistics

Website: http://www.cs.cmu.edu/~15414

Course staff contact: Piazza or
15414-staff@lists.andrew.cmu.edu
Lecture: Tuesdays & Thursdays, 12:00-1:20pm GHC 4307

Matt Fredrikson
I Location: CIC 2126
I Office Hours: Thursdays 4pm

Di Wang, Ryan Chen
I Office Hours: TBD
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