
Bug Catching: Automated Program Verification
15414/15614 Spring 2020
Lecture 1: Introduction

Matt Fredrikson

January 14, 2020

Matt Fredrikson Model Checking 1 / 22

Course Staff

Matt Fredrikson
Instructor

Di Wang
TA

Ryan Chen
TA

Matt Fredrikson Model Checking 2 / 22

Bad code

I April, 2014 OpenSSL announced
critical vulnerability in their
implementation of the Heartbeat
Extension.

I “The Heartbleed bug allows anyone on
the Internet to read the memory of the
systems protected by the vulnerable
versions of the OpenSSL software.”

I “...this allows attackers to eavesdrop
on communications, steal data directly
from the services and users and to
impersonate services and users.”

Matt Fredrikson Model Checking 3 / 22

Bad code

I April, 2014 OpenSSL announced
critical vulnerability in their
implementation of the Heartbeat
Extension.

I “The Heartbleed bug allows anyone on
the Internet to read the memory of the
systems protected by the vulnerable
versions of the OpenSSL software.”

I “...this allows attackers to eavesdrop
on communications, steal data directly
from the services and users and to
impersonate services and users.”

Matt Fredrikson Model Checking 3 / 22

Bad code

I April, 2014 OpenSSL announced
critical vulnerability in their
implementation of the Heartbeat
Extension.

I “The Heartbleed bug allows anyone on
the Internet to read the memory of the
systems protected by the vulnerable
versions of the OpenSSL software.”

I “...this allows attackers to eavesdrop
on communications, steal data directly
from the services and users and to
impersonate services and users.”

Matt Fredrikson Model Checking 3 / 22

Heartbleed, explained

Image source: Randall Munroe, xkcd.com

Matt Fredrikson Model Checking 4 / 22

Heartbleed, explained

Image source: Randall Munroe, xkcd.com

Matt Fredrikson Model Checking 4 / 22

Heartbleed, explained

Image source: Randall Munroe, xkcd.com

Matt Fredrikson Model Checking 4 / 22

Heartbleed, explained

Image source: Randall Munroe, xkcd.com

Matt Fredrikson Model Checking 4 / 22

Heartbleed, explained

Image source: Randall Munroe, xkcd.com

Matt Fredrikson Model Checking 4 / 22

Heartbleed, explained

Image source: Randall Munroe, xkcd.com

Matt Fredrikson Model Checking 4 / 22

Algorithms vs. code

1 int binarySearch(int key, int[] a, int n) {
2 int low = 0;
3 int high = n;
4

5 while (low < high) {
6 int mid = (low + high) / 2;
7

8 if(a[mid] == key) return mid; // key found
9 else if(a[mid] < key) {
10 low = mid + 1;
11 } else {
12 high = mid;
13 }
14 }
15 return -1; // key not found.
16 }

Matt Fredrikson Model Checking 5 / 22

Code Matters

This is a correct binary search algorithm.

But what if low + high > 231 − 1?

Then mid = (low + high) / 2 becomes negative
I Best case: ArrayIndexOutOfBoundsException
I Worst case: undefined behavior

Algorithm may be correct. But we run code, not algorithms.

Matt Fredrikson Model Checking 6 / 22

Code Matters

This is a correct binary search algorithm.

But what if low + high > 231 − 1?

Then mid = (low + high) / 2 becomes negative
I Best case: ArrayIndexOutOfBoundsException
I Worst case: undefined behavior

Algorithm may be correct. But we run code, not algorithms.

Matt Fredrikson Model Checking 6 / 22

Code Matters

This is a correct binary search algorithm.

But what if low + high > 231 − 1?

Then mid = (low + high) / 2 becomes negative

I Best case: ArrayIndexOutOfBoundsException
I Worst case: undefined behavior

Algorithm may be correct. But we run code, not algorithms.

Matt Fredrikson Model Checking 6 / 22

Code Matters

This is a correct binary search algorithm.

But what if low + high > 231 − 1?

Then mid = (low + high) / 2 becomes negative
I Best case: ArrayIndexOutOfBoundsException

I Worst case: undefined behavior

Algorithm may be correct. But we run code, not algorithms.

Matt Fredrikson Model Checking 6 / 22

Code Matters

This is a correct binary search algorithm.

But what if low + high > 231 − 1?

Then mid = (low + high) / 2 becomes negative
I Best case: ArrayIndexOutOfBoundsException
I Worst case: undefined behavior

Algorithm may be correct. But we run code, not algorithms.

Matt Fredrikson Model Checking 6 / 22

Code Matters

This is a correct binary search algorithm.

But what if low + high > 231 − 1?

Then mid = (low + high) / 2 becomes negative
I Best case: ArrayIndexOutOfBoundsException
I Worst case: undefined behavior

Algorithm may be correct. But we run code, not algorithms.

Matt Fredrikson Model Checking 6 / 22

How do we fix it?

The culprit: mid = (low + high) / 2

Need to make sure we don’t overflow at any point

Solution: mid = low + (high - low)/2

Matt Fredrikson Model Checking 7 / 22

How do we fix it?

The culprit: mid = (low + high) / 2

Need to make sure we don’t overflow at any point

Solution: mid = low + (high - low)/2

Matt Fredrikson Model Checking 7 / 22

How do we fix it?

The culprit: mid = (low + high) / 2

Need to make sure we don’t overflow at any point

Solution: mid = low + (high - low)/2

Matt Fredrikson Model Checking 7 / 22

The fix

1 int binarySearch(int key, int[] a, int n) {
2 int low = 0;
3 int high = n;
4

5 while (low < high) {
6 int mid = low + (high - low) / 2;
7

8 if(a[mid] == key) return mid; // key found
9 else if(a[mid] < key) {
10 low = mid + 1;
11 } else {
12 high = mid;
13 }
14 }
15 return -1; // key not found.
16 }

Matt Fredrikson Model Checking 8 / 22

The fix

1 int binarySearch(int key, int[] a, int n)
2 //@requires 0 <= n && n <= \length(A);
3 {
4 int low = 0;
5 int high = n;
6

7 while (low < high) {
8 int mid = low + (high - low) / 2;
9

10 if(a[mid] == key) return mid; // key found
11 else if(a[mid] < key) {
12 low = mid + 1;
13 } else {
14 high = mid;
15 }
16 }
17 return -1; // key not found.
18 }

Matt Fredrikson Model Checking 8 / 22

The fix

1 int binarySearch(int key, int[] a, int n)
2 //@requires 0 <= n && n <= \length(a);
3 /*@ensures (\result == -1 && !is_in(key, A, 0, n))
4 @ || (0 <= \result, \result < n
5 @ && A[\result] == key); @*/
6 {
7 int low = 0;
8 int high = n;
9

10 while (low < high) {
11 int mid = low + (high - low) / 2;
12

13 if(a[mid] == key) return mid; // key found
14 else if(a[mid] < key) {
15 low = mid + 1;
16 } else {
17 high = mid;
18 }
19 }
20 return -1; // key not found.
21 }

Matt Fredrikson Model Checking 8 / 22

The fix

1 int binarySearch(int key, int[] a, int n)
2 //@requires 0 <= n && n <= \length(a);
3 //@requires is_sorted(a, 0, n);
4 /*@ensures (\result == -1 && !is_in(key, A, 0, n))
5 @ || (0 <= \result, \result < n
6 @ && A[\result] == key); @*/
7 {
8 int low = 0;
9 int high = n;
10

11 while (low < high) {
12 int mid = low + (high - low) / 2;
13

14 if(a[mid] == key) return mid; // key found
15 else if(a[mid] < key) {
16 low = mid + 1;
17 } else {
18 high = mid;
19 }
20 }
21 return -1; // key not found.
22 }

Matt Fredrikson Model Checking 8 / 22

How do we know if it’s correct?

One solution: testing
I Probably incomplete −→ uncertain answer
I Exhaustive testing not feasible

Another: code review
I Correctness definitely important, but not the only thing
I Humans are fallable, bugs are subtle
I What’s the specification?

Better: prove correctness

Specification ⇐⇒ Implementation

I Specification must be precise
I Meaning of code must be well-defined
I Reasoning must be sound

Matt Fredrikson Model Checking 9 / 22

How do we know if it’s correct?

One solution: testing

I Probably incomplete −→ uncertain answer
I Exhaustive testing not feasible

Another: code review
I Correctness definitely important, but not the only thing
I Humans are fallable, bugs are subtle
I What’s the specification?

Better: prove correctness

Specification ⇐⇒ Implementation

I Specification must be precise
I Meaning of code must be well-defined
I Reasoning must be sound

Matt Fredrikson Model Checking 9 / 22

How do we know if it’s correct?

One solution: testing
I Probably incomplete −→ uncertain answer
I Exhaustive testing not feasible

Another: code review
I Correctness definitely important, but not the only thing
I Humans are fallable, bugs are subtle
I What’s the specification?

Better: prove correctness

Specification ⇐⇒ Implementation

I Specification must be precise
I Meaning of code must be well-defined
I Reasoning must be sound

Matt Fredrikson Model Checking 9 / 22

How do we know if it’s correct?

One solution: testing
I Probably incomplete −→ uncertain answer
I Exhaustive testing not feasible

Another: code review

I Correctness definitely important, but not the only thing
I Humans are fallable, bugs are subtle
I What’s the specification?

Better: prove correctness

Specification ⇐⇒ Implementation

I Specification must be precise
I Meaning of code must be well-defined
I Reasoning must be sound

Matt Fredrikson Model Checking 9 / 22

How do we know if it’s correct?

One solution: testing
I Probably incomplete −→ uncertain answer
I Exhaustive testing not feasible

Another: code review
I Correctness definitely important, but not the only thing
I Humans are fallable, bugs are subtle
I What’s the specification?

Better: prove correctness

Specification ⇐⇒ Implementation

I Specification must be precise
I Meaning of code must be well-defined
I Reasoning must be sound

Matt Fredrikson Model Checking 9 / 22

How do we know if it’s correct?

One solution: testing
I Probably incomplete −→ uncertain answer
I Exhaustive testing not feasible

Another: code review
I Correctness definitely important, but not the only thing
I Humans are fallable, bugs are subtle
I What’s the specification?

Better: prove correctness

Specification ⇐⇒ Implementation

I Specification must be precise
I Meaning of code must be well-defined
I Reasoning must be sound

Matt Fredrikson Model Checking 9 / 22

How do we know if it’s correct?

One solution: testing
I Probably incomplete −→ uncertain answer
I Exhaustive testing not feasible

Another: code review
I Correctness definitely important, but not the only thing
I Humans are fallable, bugs are subtle
I What’s the specification?

Better: prove correctness

Specification ⇐⇒ Implementation

I Specification must be precise
I Meaning of code must be well-defined
I Reasoning must be sound

Matt Fredrikson Model Checking 9 / 22

Algorithmic Approaches

Formal proofs are tedious

Automatic methods can:
I Check our work
I Fill in low-level details
I Give diagnostic info
I Verify everything for us

This is what you will learn!
I Make use of these methods
I How (and when) they work Image source: Daniel Kroening & Ofer

Strichman, Decision Procedures

Matt Fredrikson Model Checking 10 / 22

Course objectives

I Identify and formalize program correctness

I Understand language semantics

I Apply mathematical reasoning to program correctness

I Learn how to write correct software, from beginning to end

I Use automated tools that assist verifying your code

I Understand how verification tools work

Matt Fredrikson Model Checking 11 / 22

Reasoning about correctness

Functional Correctness
I Specification
I Proof

Specify behavior with logic
I Declarative
I Precise

Systematic proof techniques
I Derived from semantics
I Exhaustive proof rules
I Automatable∗

Matt Fredrikson Model Checking 12 / 22

Why3

Deductive verification platform
I Programming language
I Verification toolchain

Rich specification language
I Pre- and post-conditions, assertions
I Pure mathematical functions
I Termination metrics

Programmer writes specification, partial annotations

Compiler proves correctness automatically!

Matt Fredrikson Model Checking 13 / 22

Automated Verifiers

Systems that prove that programs match their specifications

Problem is undecidable!
1. Require annotations
2. Relieve manual burden by

inferring some annotations

Verifiers are complex systems
I We’ll deep-dive into selected

components
I Understand “big picture” for

the rest

Basic idea:
1. Translate programs into

proof obligations
2. Encode proof obligations as

satisfiability
3. Solve using a decision

procedure

Matt Fredrikson Model Checking 14 / 22

Automated Verifiers

Systems that prove that programs match their specifications

Problem is undecidable!
1. Require annotations
2. Relieve manual burden by

inferring some annotations

Verifiers are complex systems
I We’ll deep-dive into selected

components
I Understand “big picture” for

the rest

Basic idea:
1. Translate programs into

proof obligations
2. Encode proof obligations as

satisfiability
3. Solve using a decision

procedure

Matt Fredrikson Model Checking 14 / 22

Automated Verifiers

Systems that prove that programs match their specifications

Problem is undecidable!
1. Require annotations
2. Relieve manual burden by

inferring some annotations

Verifiers are complex systems
I We’ll deep-dive into selected

components
I Understand “big picture” for

the rest

Basic idea:
1. Translate programs into

proof obligations
2. Encode proof obligations as

satisfiability
3. Solve using a decision

procedure

Matt Fredrikson Model Checking 14 / 22

Model Checking

Fully-automatic techniques for finding bugs (or proving their absence)

I Specifications written in
propositional temporal logic

I Verification by exhaustive state
space search

I Diagnostic counterexamples

I No proofs!
I Downside: “State explosion”
1070 atoms 10500000 states

code spec

model
checker

X counter-
example

Matt Fredrikson Model Checking 15 / 22

Model Checking

Fully-automatic techniques for finding bugs (or proving their absence)

I Specifications written in
propositional temporal logic

I Verification by exhaustive state
space search

I Diagnostic counterexamples
I No proofs!

I Downside: “State explosion”
1070 atoms 10500000 states

code spec

model
checker

X counter-
example

Matt Fredrikson Model Checking 15 / 22

Model Checking

Fully-automatic techniques for finding bugs (or proving their absence)

I Specifications written in
propositional temporal logic

I Verification by exhaustive state
space search

I Diagnostic counterexamples
I No proofs!
I Downside: “State explosion”

1070 atoms 10500000 states

code spec

model
checker

X counter-
example

Matt Fredrikson Model Checking 15 / 22

Model Checking

Fully-automatic techniques for finding bugs (or proving their absence)

I Specifications written in
propositional temporal logic

I Verification by exhaustive state
space search

I Diagnostic counterexamples
I No proofs!
I Downside: “State explosion”
1070 atoms 10500000 states

code spec

model
checker

X counter-
example

Matt Fredrikson Model Checking 15 / 22

Model Checking

Clever ways of dealing with state explosion:

I Partial order reduction
I Bounded model checking
I Symbolic representations
I Abstraction & refinement

Now widely used for verification & bug-finding:
I Hardware, software, protocols, …
I Microsoft, Intel, Amazon, Google, NASA, …

Ed Clarke
Turing Award,

2007

Matt Fredrikson Model Checking 16 / 22

Model Checking

Clever ways of dealing with state explosion:
I Partial order reduction
I Bounded model checking
I Symbolic representations
I Abstraction & refinement

Now widely used for verification & bug-finding:
I Hardware, software, protocols, …
I Microsoft, Intel, Amazon, Google, NASA, …

Ed Clarke
Turing Award,

2007

Matt Fredrikson Model Checking 16 / 22

Model Checking

Clever ways of dealing with state explosion:
I Partial order reduction
I Bounded model checking
I Symbolic representations
I Abstraction & refinement

Now widely used for verification & bug-finding:
I Hardware, software, protocols, …
I Microsoft, Intel, Amazon, Google, NASA, …

Ed Clarke
Turing Award,

2007

Matt Fredrikson Model Checking 16 / 22

Model Checking

Clever ways of dealing with state explosion:
I Partial order reduction
I Bounded model checking
I Symbolic representations
I Abstraction & refinement

Now widely used for verification & bug-finding:
I Hardware, software, protocols, …
I Microsoft, Intel, Amazon, Google, NASA, …

Ed Clarke
Turing Award,

2007

Matt Fredrikson Model Checking 16 / 22

Grading

Breakdown:
I 40% labs
I 25% written homework
I 30% exams (15% each,

midterm and final)
I 5% participation

5 labs

Weekly written homework

In-class exams, closed-book

Participation:
I Come to lecture
I Answer questions (in class and

on Piazza!)
I Contribute to discussion

Matt Fredrikson Model Checking 17 / 22

Grading

For the labs, you will:
I Implement some functionality
I Specify correctness for that functionality
I Use Why3 to prove it correct

Most important criterion is correctness.

Full points when you provide the following
I Correct implementation
I Correct specification
I Correct annotations
I Sufficient annotations for verification

Partial credit depending on how many of these you achieve

Clarity & conciseness is necessary for partial credit!

Matt Fredrikson Model Checking 18 / 22

Grading

For the labs, you will:
I Implement some functionality
I Specify correctness for that functionality
I Use Why3 to prove it correct

Most important criterion is correctness.

Full points when you provide the following
I Correct implementation
I Correct specification
I Correct annotations
I Sufficient annotations for verification

Partial credit depending on how many of these you achieve

Clarity & conciseness is necessary for partial credit!

Matt Fredrikson Model Checking 18 / 22

Grading

For the labs, you will:
I Implement some functionality
I Specify correctness for that functionality
I Use Why3 to prove it correct

Most important criterion is correctness.

Full points when you provide the following
I Correct implementation
I Correct specification
I Correct annotations
I Sufficient annotations for verification

Partial credit depending on how many of these you achieve

Clarity & conciseness is necessary for partial credit!

Matt Fredrikson Model Checking 18 / 22

Grading

For the labs, you will:
I Implement some functionality
I Specify correctness for that functionality
I Use Why3 to prove it correct

Most important criterion is correctness.

Full points when you provide the following
I Correct implementation
I Correct specification
I Correct annotations
I Sufficient annotations for verification

Partial credit depending on how many of these you achieve

Clarity & conciseness is necessary for partial credit!

Matt Fredrikson Model Checking 18 / 22

Labs

Labs are intended to build proficiency in:
I Writing good specifications
I Applying course principles to practice
I Making effective use of automated tools
I Writing useful & correct code

Gradual progression to sophistication:
1. Familiarize yourself with Why3
2. Implement and prove something
3. Work with more complex data structures
4. Implement and prove something really interesting
5. Optimize your implementation, still verified

Matt Fredrikson Model Checking 19 / 22

Labs

Labs are intended to build proficiency in:
I Writing good specifications
I Applying course principles to practice
I Making effective use of automated tools
I Writing useful & correct code

Gradual progression to sophistication:
1. Familiarize yourself with Why3
2. Implement and prove something
3. Work with more complex data structures
4. Implement and prove something really interesting
5. Optimize your implementation, still verified

Matt Fredrikson Model Checking 19 / 22

Grading

Written homeworks focus on theory and fundamental skills

Grades are based on:
I Correctness of your answer
I How you present your reasoning

Strive for clarity & conciseness
I Show each step of your reasoning
I State your assumptions
I Answers without these −→ no points

Matt Fredrikson Model Checking 20 / 22

Grading

Written homeworks focus on theory and fundamental skills

Grades are based on:
I Correctness of your answer
I How you present your reasoning

Strive for clarity & conciseness
I Show each step of your reasoning
I State your assumptions
I Answers without these −→ no points

Matt Fredrikson Model Checking 20 / 22

Grading

Written homeworks focus on theory and fundamental skills

Grades are based on:
I Correctness of your answer
I How you present your reasoning

Strive for clarity & conciseness
I Show each step of your reasoning
I State your assumptions
I Answers without these −→ no points

Matt Fredrikson Model Checking 20 / 22

Late Policy

No late days on written homework
I Not intended to be time-intensive
I 20% deduction for each day past deadline

Can earn back missed points for proofs on labs
I Must submit original lab by the deadline
I Resubmit once within three days of deadline
I If proof is complete & correct (read: compiler accepts it), earn

back points only on the proof
Regrades
I No push-button regrades
I Discuss suspected error with us in person
I We will regrade the entire assignment

Matt Fredrikson Model Checking 21 / 22

Late Policy

No late days on written homework
I Not intended to be time-intensive
I 20% deduction for each day past deadline

Can earn back missed points for proofs on labs
I Must submit original lab by the deadline
I Resubmit once within three days of deadline
I If proof is complete & correct (read: compiler accepts it), earn

back points only on the proof

Regrades
I No push-button regrades
I Discuss suspected error with us in person
I We will regrade the entire assignment

Matt Fredrikson Model Checking 21 / 22

Late Policy

No late days on written homework
I Not intended to be time-intensive
I 20% deduction for each day past deadline

Can earn back missed points for proofs on labs
I Must submit original lab by the deadline
I Resubmit once within three days of deadline
I If proof is complete & correct (read: compiler accepts it), earn

back points only on the proof
Regrades
I No push-button regrades
I Discuss suspected error with us in person
I We will regrade the entire assignment

Matt Fredrikson Model Checking 21 / 22

Logistics

Website: http://www.cs.cmu.edu/~15414

Course staff contact: Piazza or
15414-staff@lists.andrew.cmu.edu
Lecture: Tuesdays & Thursdays, 12:00-1:20pm GHC 4307

Matt Fredrikson
I Location: CIC 2126
I Office Hours: Thursdays 4pm

Di Wang, Ryan Chen
I Office Hours: TBD

Matt Fredrikson Model Checking 22 / 22

http://www.cs.cmu.edu/~15414

