
15-414: Bug Catching: Automated Program Verification

Lecture Notes on
CTL Model Checking

Matt Fredrikson

Carnegie Mellon University
Lecture 23

Tuesday, April 19 2022

1 Introduction

We have seen how to model computations using Kripke structures, and how to specify
temporal properties of their behaviors using Computation Tree Logic. Today, we will
see how to determine whether a CTL formula is true for a given Kripke structure, a
process called model checking. The approach that we study is notable for its simplicity
and reasonable complexity, which is linear in the size of the Kripke structure and size
of the formula. However, many of the structures of interest in real settings are too large
even for this linear-time algorithm, and in future lectures we will study techniques for
coping with this problem.

Learning goals

After this lecture, you will:

• Understand how CTL model checking is accomplished by decomposing a for-
mula into local reasoning about a given state, and global reasoning about the
paths reachable from it.

• Learn about the role of monotone fixpoints in CTL model checking, and how to
compute the least and greatest fixpoints of a monotone function iteratively.

• Understand how to compute the set of states in a Kripke structure that satisfy a
given CTL formula, making use of CTL axioms and iterative fixpoint computa-
tion.

• See how this can be applied to model checking on the mutual exclusion example
from the previous lecture.

http://www.cs.cmu.edu/~15414/s22

L23.2 CTL Model Checking

2 Review

We start with a refresher on Kripke structures and Computation Tree Logic.

Definition 1 (Kripke structure). A Kripke frame (W,↷) consists of a set W with a transi-
tion relation ↷ ⊆ W ×W where s ↷ t indicates that there is a direct transition from s to
t in the Kripke frame (W,↷). The elements s ∈ W are also called states. A Kripke struc-
ture K = (W,↷, v, I) is a Kripke frame (W,↷) with a mapping v : W → 2V , where 2V

is the powerset of V assigning truth-values to all the propositional atoms in all states.
Moreover, a Kripke structure has a set of initial states I ⊆ W .

A Kripke structure K = (W,↷, v, I) is called a computation structure if W is a finite set
of states and every element s ∈ W has at least one direct successor t ∈ W with s ↷ t.
A (computation) path is an infinite sequence s0, s1, s2, s3, . . . of states si ∈ W such that
si ↷ si+1 for all i. We will always assume that the structures used in model checking
are computation structures, unless otherwise noted.

Formulas in CTL represent properties of paths that are reachable from a given state,
and are thus called state formulas. By convention, when comparing a CTL formula to
a Kripke structure, we always consider the paths reachable from the initial state. CTL
formulas use the E (existential) and A (universal) path quantifiers, which ask whether
there exists a path with a given property, or whether all paths exhibit a given property.

• EP is a state formula where for a given Kripke structure K we have the following:

K, s |= EP ↔ there exists a path π starting at s where π |= P

• AP is a state formula where for a given Kripke structure K we have the following:

K, s |= AP ↔ for all paths π starting at s, π |= P

Path quantifiers are always paired with a path formula, which specifies a property over
a given single path. If P is a state formula, then the following are all path formulas.

• XP : The next state in the path satisfies P .

• GP : All states in the path satisfy P .

• FP : There exists some state on the path that satisfies P .

• P UQ: There exists some state on the path that satisfies Q. Until then, all states
satisfy P .

Putting all of this together, the semantics of the logic is shown in Definition 2.

Definition 2. In a fixed computation structure K = (W,↷, v), the truth of CTL formulas
in state s is defined inductively as follows:

1. s |= p iff v(s)(p) = true for atomic propositions p

15-414 LECTURE NOTES MATT FREDRIKSON

CTL Model Checking L23.3

2. s |= ¬P iff s ̸|= P , i.e. it is not the case that s |= P

3. s |= P ∧Q iff s |= P and s |= Q

4. s |= AXP iff all successors t with s ↷ t satisfy t |= P

5. s |= EXP iff at least one successor t with s ↷ t satisfies t |= P

6. s |= AGP iff all paths s0, s1, s2, . . . starting in s0 = s satisfy si |= P for all i ≥ 0

7. s |= AFP iff all paths s0, s1, s2, . . . starting in s0 = s satisfy si |= P for some i ≥ 0

8. s |= EGP iff some path s0, s1, s2, . . . starting in s0 = s satisfies si |= P for all
i ≥ 0

9. s |= EFP iff some path s0, s1, s2, . . . starting in s0 = s satisfies si |= P for some
i ≥ 0

10. s |= A[P UQ] iff all paths s0, s1, s2, . . . starting in s0 = s have some i ≥ 0 such
that si |= Q and sj |= P for all 0 ≤ j < i

11. s |= E[P UQ] iff some path s0, s1, s2, . . . starting in s0 = s has some i ≥ 0 such
that si |= Q and sj |= P for all 0 ≤ j < i

3 CTL Model Checking

The idea behind model checking is to exploit finiteness of the state spaces to directly
compute the semantics of the formulas. Given a finite computation structure K = (W,↷
, v) the CTL model checking algorithm computes the set of all states of K in which CTL
formula ϕ is true:

[[ϕ]]
def
= {s ∈ W : s |= ϕ}

The CTL model checking algorithm for a computation structure K = (W,↷, v) com-
putes this set [[ϕ]] by directly following the semantics in a recursive function along the
equations in this lemma.

The main hurdle that we need to overcome is what to do for operators like F, G, and
U, which specify that certain facts must hold on states encountered arbitrarily far into
the future on paths. To address this, we will use some machinery having to do with
fixpoints of monotone functions.

Monotone fixpoints. The model checking algorithm operates over sets of states, work-
ing towards computing [[ϕ]]. When working with these sets, we adopt the same nota-
tional convention for set union ∪ and intersection ∩ as we did for logical disjunction ∨
and conjunction ∧, namely that ∩ and ∧ bind more closely than ∪ and ∨.

Let ℘(W) denote the set of all subsets of W , and let f be a function from ℘(W) to
℘(W). We say that f is monotone if and only if it preserves subset ordering, i.e.:

U ⊆ V implies that f(U) ⊆ f(V) (1)

15-414 LECTURE NOTES MATT FREDRIKSON

L23.4 CTL Model Checking

Note that this property is exactly like the monotone functions over real numbers, with
the subset relation in place of numeric inequality.

A fixpoint of f is an element Z ∈ ℘(W) that is mapped to itself by f , i.e. f(Z) = Z.
A given function may have many fixpoints; for example, every element is a fixpoint
of the identity function. Two special cases that we will make use of for model check-
ing are the least and greatest fixpoints. We denote the least fixpoint µZ.f(Z) to be the
unique fixpoint that is a subset of any other fixpoint, and the greatest fixpoint νZ.f(Z)
similarly. Note that a function need not have a least or greatest fixpoint. The particular
special case of the seminal Knaster-Tarski fixpoint theorem shown in Theorem 3 says
that monotone functions have both, and provides a recipe for finding them.

Theorem 3 (Knaster-Tarski). Every monotone function f : ℘(W) → ℘(W) has a least and a
greatest fixpoint and both can be found by iteration:

µZ.f(Z) =
⋃
n≥1

fn(∅) νZ.f(Z) =
⋂
n≥1

fn(W)

In Theorem 3, fn is the n-fold composition of f . So fn+1 is the function mapping Z
to f(fn(Z)) and f1 is f , and for example, f3 is the function mapping Z to f(f(f(Z))) .

For complicated functions on infinite sets, the above unions and intersections range
over more than just all natural numbers and may not be directly useful in an algorithm.
But model checking is typically done when the computation structure is finite. In that
case, it is entirely obvious that the union and intersection only range over finitely many
natural numbers. Every time we consider an additional iteration fn(∅), we either find
a new state that was not in the union yet. Or we do not find such a state but then, since
nothing changed, the iterate fn+1(∅) will not find anything new either. Since there
are only finitely many different states in a finite state set W of a finite computation
structure, we can only find new states finitely often so that the computation terminates.
The argument for the intersection is correspondingly.

3.1 The algorithm

The following lemma exploits the fact that every state has a successor in computation
structures, so some next state is always defined.

Lemma 4 (Next remainders). The following are sound axioms for the computation structures
of CTL:

(EG) EGP ↔ P ∧EXEGP

(EU) EP UQ ↔ Q ∨ P ∧EXEP UQ

To compute the set of states that satisfy a CTL formula ϕ, we apply the expansion
laws in Lemma 4 directly to the set of states that satisfy subformulas of ϕ. Whenever
the expansion results in the same formula being on both the left and right side of an
equality, the algorithm computes a fixpoint. The main question that remains is for

15-414 LECTURE NOTES MATT FREDRIKSON

CTL Model Checking L23.5

which cases we should use least or greatest fixpoints. The proof of Theorem 5 sorts this
matter out.

Theorem 5 (CTL model checking). In computation structures, the set [[ϕ]] of all states that
satisfy CTL formula ϕ satisfies the following equations:

1. [[p]] = {s ∈ W : v(s)(p) = true} for atomic propositions p

2. [[¬P]] = W \ [[P]]

3. [[P ∧Q]] = [[P]] ∩ [[Q]]

4. [[P ∨Q]] = [[P]] ∪ [[Q]]

5. [[EXP]] = τEX([[P]]) using the existential successor function τEX() defined as follows:

τEX(Z)
def
= {s ∈ W : t ∈ Z for some state t with s ↷ t}

6. [[AXP]] = τAX([[P]]) using the universal successor function τAX() defined as follows:

τAX(Z)
def
= {s ∈ W : t ∈ Z for all states t with s ↷ t}

7. [[EFP]] = µZ.([[P]]∪ τEX(Z)) where µZ.f(Z) denotes the least fixpoint Z of the opera-
tion f(Z), that is, the smallest set of states satisfying Z = f(Z).

8. [[EP UQ]] = µZ.
(
[[Q]] ∪ ([[P]] ∩ τEX(Z))

)
The correctness argument for the verification algorithm uses the axioms together

with the insight that the respective set of states that they characterize are the smallest
set satisfying the respective equivalence. The largest set for EFP satisfying the equiv-
alence would simply be the entire set of states, which is futile. Likewise, the smallest
set of states for EGP satisfying the equivalence in EG would simply be the empty set
of states, since every state has a successor in a computation structure.

Proof of Theorem 5. The proof is not by induction on the number of states or on the for-
mula because the resulting formulas are not any easier than the original formulas.
Instead, it handles each equation separately. While the proof was left as an exercise
originally [CES83], some cases are already proved in [CGP99], some more in [BKL08],
and a much more comprehensive proof including the nontrivial case AP UQ that uses
König’s lemma is in [Sch03].

The first cases immediately follow the semantics of atomic propositions, proposi-
tional operators, and EX . The remaining cases separately argue that the solution is a
fixpoint and then that it is the largest or smallest, as indicated by Theorem 5.

1. By axiom EG and case 5, the formula EGP satisfies the fixpoint equation:

[[EGP]] = [[P ∧EXEGP]] = [[P]] ∩ τEX([[EGP]])

15-414 LECTURE NOTES MATT FREDRIKSON

L23.6 CTL Model Checking

In order to show that [[EGP]] is the greatest fixpoint, consider another fixpoint
H = [[P]] ∩ τEX(H) and show that H ⊆ [[EGP]] by considering any state s0 ∈ H
and showing that s0 ∈ [[EGP]]. Since H ⊆ [[P]], it is enough to show that there is
a path s0, s1, s2, . . . such that si ∈ H for all i by induction on i, implying si |= P .

n=0: The base case follows from s0 ∈ H .

n+1: By induction hypothesis sn ∈ H . Thus, sn ∈ H = [[P]]∩ τEX(H), so there is a
state sn+1 with sn ↷ sn+1 and sn+1 ∈ H .

2. By axiom EU and case 5, the formula EP UQ satisfies the fixpoint equation:

[[EP UQ]] = [[Q ∨ P ∧EXEP UQ]] = [[Q]] ∪ [[P]] ∩ τEX([[EP UQ]])

In order to show that [[EP UQ]] is also the least fixpoint, consider another fixpoint
H = [[Q]] ∪ [[P]] ∩ τEX(H) and show that [[EP UQ]] ⊆ H . So consider any s0 ∈
[[EP UQ]] and show that s0 ∈ H . By s0 ∈ [[EP UQ]], there is a path s0, s1, s2, . . .
and an n such that sn |= Q and sj |= P for all 0 ≤ j < n. We prove that si ∈ H for
all 0 ≤ i ≤ n by backwards induction on i.

i = n: The base case where i = n follows from sn ∈ [[Q]] ⊆ [[Q]] ∪ [[P]]∩τEX(H) = H .

n− 1: By induction hypothesis, sn ∈ H . In order to show that sn−1 ∈ H = [[Q]] ∪
[[P]] ∩ τEX(H), we use that sn−1 |= P and that sn−1 has a successor sn ∈ H .
Thus, sn−1 ∈ [[P]] ∩ τEX(H) ⊆ H .

This induction ends at s0, as there are no more predecessors in the path s0, s1, . . .
to consider, leaving us with s0 ∈ H .

Since the successor function can be computed by checking off the corresponding
states along the computation structure, the only remaining question is how the least and
greatest fixpoints can be computed. Note all the functions in Theorem 5 are monotone,
in the sense that if their parts are true in more states then the expressions themselves
are true in more states, too.

Theorem 6 (Complexity). The CTL model checking problem is linear in the size of the state
space K = (W,↷, v) and in the size of the formula ϕ in the sense that it is in O(|K| · |ϕ|) where
|K| = |W |+ |↷|.

4 Example: Mutual Exclusion

Recall the mutal exclusion example introduced in the previous lecture.
The notation in the following transition diagram is nt for: the first process is in the

noncritical section while the second process is trying to get into its critical section.
n noncritical section of an abstract process
t trying to enter critical section of an abstract process
c critical section of an abstract process

15-414 LECTURE NOTES MATT FREDRIKSON

CTL Model Checking L23.7

Those atomic propositional letters are used with suffix 1 to indicate that they apply to
process 1 and with suffix 2 to indicate process 2. For example the notation nt indicates
a state in which n1 ∧ t2 is true (and no other propositional letters). Consider Kripke
structure

nn
0

tn

1

cn2

ct

4

tt

3

nt

5

tt

6

tc

8

nc

7

1. Safety: ¬EF (c1 ∧ c2) is trivially true since there is no state labelled ccx.

2. Liveness: AG (t1 → AF c1) ∧AG (t2 → AF c2)

Checking 1 |= t1 → AF c1 alias 1 |= ¬t1 ∨AF c1 first computes subformulas.

[[t1]] = {1, 3, 6, 8}
[[c1]] = {2, 4}

[[¬t1]] = {0, 2, 4, 5, 7}
[[AF c1]] = µZ.([[c1]] ∪ τAX(Z)) =: µZ.f(Z)

f1(∅) = [[c1]] = {2, 4}
f2(∅) = [[c1]] ∪ τAX({2, 4}) = {1, 2, 3, 4}
f3(∅) = [[c1]] ∪ τAX({1, 2, 3, 4}) = {1, 2, 3, 4, 8}
f4(∅) = [[c1]] ∪ τAX({1, 2, 3, 4, 8}) = {1, 2, 3, 4, 6, 8}
f5(∅) = [[c1]] ∪ τAX({1, 2, 3, 4, 6, 8}) = {1, 2, 3, 4, 6, 8} = f4(∅)

[[AF c1]] = {1, 2, 3, 4, 6, 8}
[[¬t1 ∨AF c1]] = {0, 1, 2, 3, 4, 5, 6, 7, 8}

Since 1 ∈ [[¬t1 ∨ AF c1]] CTL model checking confirms 1 |= ¬t1 ∨ AF c1. Since every
state [[¬t1 ∨AF c1]] equals the set of all states, it is easy to see that model checking will
also eventually find 0 ∈ [[AG (¬t1 ∨AF c1)]]. Consequently it confirms that the initial
state 0 satisfies 0 |= AG (¬t1 ∨AF c1).

15-414 LECTURE NOTES MATT FREDRIKSON

L23.8 CTL Model Checking

Exercises

1. Prove that the next remainder axiom for G is valid:

(EG) EGP ↔ P ∧EXEGP

2. Identify next remainder axioms for the remaining CTL formulas not covered ex-
plicitly in this lecture: EF, AX, AG, AF, and AU.

3. Using your axioms from the previous question, derive model checking equations
for JEFP K, JAXP K, JAGP K, JAFP K, and JA[P UQ]K.

4. Prove Theorem 5 for your solution to JAGP K from the previous question.

References

[BKL08] Christel Baier, Joost-Pieter Katoen, and Kim Guldstrand Larsen. Principles of
Model Checking. MIT Press, 2008.

[CES83] Edmund M. Clarke, E. Allen Emerson, and A. Prasad Sistla. Automatic veri-
fication of finite state concurrent systems using temporal logic specifications:
A practical approach. In POPL, pages 117–126, 1983.

[CGP99] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking.
MIT Press, Cambridge, 1999.

[Eme90] Allen Emerson. Temporal and modal logic. In Jan van Leeuwen, editor, Hand-
book of Theoretical Computer Science, Volume B: Formal Models and Sematics (B),
pages 995–1072. MIT Press, 1990.

[Sch03] Peter H. Schmitt. Nichtklassische Logiken. Vorlesungsskriptum Fakultät für
Informatik , Universität Karlsruhe, Mai 2003.

15-414 LECTURE NOTES MATT FREDRIKSON

	Introduction
	Review
	CTL Model Checking
	The algorithm

	Example: Mutual Exclusion

