
15-414: Bug Catching: Automated Program Verification

Lecture Notes on
Bounded Model Checking

Matt Fredrikson

Carnegie Mellon University
Lecture 17

Thursday, March 24, 2022

1 Introduction

In this lecture, we will show how we can use SAT solvers to either verify that some
program is correct or find a counterexample that shows inputs to the program that may
trigger some bug. One approach that can leverage SAT technology is through bounded
model checking. There are several challenges when trying to verify programs, foremost
among them the fact state-space of programs may be infinite. Bounded model checking
computes an underapproximation of the reachable state-space by assuming a fixed com-
putation depth in advance, and treating paths within this depth limit symbolically to
explore all possible states. While this approach has its limitations, it can be effectively
used in practice and it is a useful technique to have in our collection of verification
techniques.

Learning Goals.

In this lecture, you will learn:

• How bounded model checking verifies an under-approximation of a program’s
semantics against a contract given by a Hoare triple, by leveraging the strongest
postcondition introduced in Lecture 11.

• A key limitation of bounded model checking, i.e. the fact that it cannot prove the
absence of all bugs, can be partially mitigated with unwinding assertions.

• How tools like Z3 can be applied to implement bounded model checking over
formulas of bit vector arithmetic, providing counterexamples in cases where the
program cannot be verified.

http://www.cs.cmu.edu/~15414/s22

L17.2 Bounded Model Checking

2 Bounded Model Checking

Now that we have seen how the validity of a formula over machine integers can be re-
duced to propositional satisfiability, we will take the discussion a step further and show
how verification problems are cast as validity over machine integers. The approach that
we consider is called bounded model checking, and is one of the original, and still among
the most prevalent, applications of bit-blasting.

Bounded model checking essentially computes an underapproximation of the set of
states that a given program may be able to reach, and checks these states against a
given “goal” formula that describes the specification. In this lecture, we will focus on
specifications given as Hoare triples, as discussed in Lecture 11. Given a program α,
check that the postcondition Q is true in any reachable final state assuming that the
precondition P is true in any initial state:

P {α}Q

In practice, bounded model checking is often employed to check other types of proper-
ties, such as invariants which require that any reachable state models a given formula.

2.1 Computing reachable states

Recall from Lecture 11 the strongest postcondition:

1. P{α}(sp(α)P) (it is a postcondition, or: it is a necessary consequence of P)

2. If P{α}R then sp(α)P → R (it is a strongest postcondition for P , or: is it sufficient
for all consequences of P)

In other words, given a precondition P , the strongest postcondition for P is a formula
that describes all of the possible consequences of executing α starting in P . For any
other possible formula R describing the set of final states from executing α starting in
P , we know that sp(α)P → R.

If our pre and postconditions are given in the theory of bit vector arithmetic, then the
strongest postcondition provides a means of checking a Hoare triple P {α}Q using a
SAT solver.

1. Compute the strongest postcondition of the precondition P .

2. Check the satisfiability of sp(α)P ∧ ¬Q.

a) If the result is sat, then the Hoare triple is not valid.

b) If the result is unsat, then the Hoare triple is valid.

To understand why this procedure is correct, first consider the case where the solver
returns sat. A satisfying assignment to sp(α)P ∧ ¬Q will consist of a set of values for
variables in the final state of α, that does not satisfy the goal postcondition Q; in other
words, this case yields a counterexample to the Hoare triple P {α}Q. On the other hand,

15-414 LECTURE NOTES MATT FREDRIKSON

Bounded Model Checking L17.3

if the solver returns unsat, then it means that for all possible final states described by
sp(α)P , none of them is consistent with ¬Q. In other words, all of the final states of α
starting in P satisfy Q, so the Hoare triple is valid.

So far, this is promising given that we know how to compute strongest postcondi-
tions, and we know how to decide the satisfiability of bit vector arithmetic. As you
might have guessed, the problem with this approach is the iteration command, for
which the strongest postcondition has a recursive definition:

sp(α∗)P = P ∨ sp(α∗)(sp(α)P)

The way that bounded model checking resolves the issue is to simply impose an upper-
bound on the number of times the iterative strongest postcondition is applied recur-
sively. This is tantamount to syntactically “unwinding” each of the loops in the pro-
gram a finite number of times, and checking the resulting loop-free program.

Consider the following program.

(x := x+ 1)∗

Suppose that we wish to apply bounded model checking with an iteration bound of
k = 2, i.e., we will only recursively apply the strongest postcondition twice.

sp((x := x+ 1)∗)P (x) =
P (x) ∨ sp((x := x+ 1)∗)(sp(x := x+ 1)P (x)) =
P (x) ∨ sp((x := x+ 1)∗)(∃x1.x = x1 + 1 ∧ P (x1)) =
P (x) ∨ (∃x1.x = x1 + 1 ∧ P (x1) ∨ sp((x := x+ 1)∗)(sp(x := x+ 1)(. . .)))

At this point we have applied the strongest postcondition twice: once on the original
program, and again on the body of the iteration. The result still has a disjunctive term
corresponding to the strongest postcondition:

sp((x := x+ 1)∗)(sp(x := x+ 1)(∃x1.x = x1 + 1 ∧ P (x1)))

We do not wish to apply the strongest postcondition again, as we have reached our
bound of k = 2. We have two choices of how to remove this term from the formula.

Ignorance is bliss The first option is to simply ignore it. The identity for disjunction
is false, so we simply replace the remaining appearance of strongest postcondition with
⊥ in the formula, and proceed with satisfiability checking. The resulting formula in this
case would be:

P (x) ∨ (∃x1.x = x1 + 1 ∧ P (x1))

But notice that this formula only accounts for two of the infinite set of possible ways
to execute the original program (x := x + 1)∗: executing the body either zero or one
time. This means that any time we have a postcondition Q that could only be violated
after executing the body more than once, we will remain ignorant of the corresponding

15-414 LECTURE NOTES MATT FREDRIKSON

L17.4 Bounded Model Checking

bugs. For example, if P (x) ≡ x = 0 and Q(x) ≡ x > 1, then the formula that bounded
model checking will ultimately check satisfiability of:

(x = 0 ∨ (∃x1.x = x1 + 1 ∧ x1 = 0)) ∧ ¬(x > 1) is unsatisfiable

Thus, by taking this approach we remain blissfully ignorant of any bugs that manifest
on deeper executions of the program.

Conservative, but safe The fact that bounded model checking unwinds iteration
only a pre-determined finite number of times means that it will always fall short of
being able to uncover bugs that arise deep in execution. But in some cases, it is possible
to verify that the procedure has unwinded iteration enough to find any bugs that could
arise. Thus, if bounded model checking returns unsat, we can conclude that the Hoare
triple is valid.

This approach relies on unwinding assertions, which are named as such because they
can be understood in terms of adding assertions at certain points in the unwinding
procedure. Consider the following program, which will only ever execute its loop body
once.

1 x := 0;

2 while(x < 1)

3 x := x + 1;

Nonetheless, if we were to attempt to verify the Hoare triple {true}α {x < 2} using
bounded model checking for k = 1, we would imagine unwinding the loop once, and
applying bounded model checking to the result:

1 x := 0;

2 if(x < 1)

3 x := x + 1;

This would lead to the following satisfiability check, which has been simplified for
clarity; the guard from the conditional does not appear, nor does the “else” branch,
because the initial assignment to x makes both tautological.

(∃x1.x = x1 + 1 ∧ x1 = 0) ∧ ¬(x < 2)

This is unsatisfiable, as expected, because the program clearly satisfies the postcondi-
tion: there is no execution that ends in a final state where x ≥ 2. But bounded model
checking does not actually let us draw such a conclusion, because it only promises to
find violations up to the depth that we allowed it to unwind the loop, so the fact that
this is unsatisfiable does not let us conclude that a deeper unwinding will also be bug-
free.

To take advantage of unwinding assertions, suppose that we added the following
assertion once the unwinding had reached its depth bound:

1 x := 0;

2 if(x < 1) {

3 x := x + 1;

4 assert(x ≥ 1);

5 }

15-414 LECTURE NOTES MATT FREDRIKSON

Bounded Model Checking L17.5

If this assertion were to fail when the program were executed, then it would tell us that
deeper executions are possible in the program that we unwound, and to rule out bugs
with bounded model checking, we should increase the depth bound.

We can incorporate this reasoning into bounded model checking by “simulating” the
assertion when we compute the strongest postcondition. We add a special variable to
signal that an assertion has been violated:

1 x := 0;

2 if(x < 1) {

3 x := x + 1;

4 if(x < 1)

5 error := 1

6 }

Then we use bounded model checking to verify the triple {error = 0}α {error = 1}.
Note that we do not literally need to rewrite the program by adding a conditional state-
ment to it. Whereas with the “ignorance is bliss” approach we equated the remaining
strongest postcondition term in a recursive unrolling with false, here we instead re-
place with the strongest postcondition of the simulated assertion. In the example, the
formula that we return would be:

∃x1.x = x1 + 1 ∧ (x1 = 0 ∧ ∃err1.err = 1 ∧ err1 = 0)

We would then check whether the following formula is satisfiable:

∃x1.x = x1 + 1 ∧ (x1 = 0 ∧ ∃err1.err = 1 ∧ err1 = 0) ∧ err = 1

Using unwinding assertions is conservative in the sense that if this formula is satisfi-
able, then it does not necessarily mean that there is an execution of the program that
violates the postcondition. It simply means that the depth of the bounded check is
not sufficient to rule out potential violations, and that a larger unwinding bound may
uncover additional bugs.

3 Implementation with Z3

At this point, we have learned how formulas over bit vectors can encode constraints
involving machine integers, as well as an approach for finding bugs, and in some
cases proving their absence, using bounded model checking. Now we will put these
pieces together, and see how to perform bounded model checking with a tool called
Z3 [DMB08].

You are likely already somewhat familiar with Z3, as it is one of the three decision
procedures what Why3 uses to discharge verification conditions. Here we will see how
to use Z3’s Python API to implement a strongest postcondition generator, check the
satisfiability of formulas needed to implement bounded model checking, and examine
its results to gain insight into bugs that the procedure discovers. You may already
have Z3 on your system because it is used by Why3. If you use a virtual machine or
Docker container to run Why3, and would like to run Z3 natively, pre-built binaries for

15-414 LECTURE NOTES MATT FREDRIKSON

L17.6 Bounded Model Checking

all major platforms can be obtained at https://github.com/Z3Prover/z3/releases. The
Python API can be installed using pip:

1 pip install z3 -solver

Further instructions are available at https://github.com/Z3Prover/z3.
To make use of Z3’s Python API, we will import its entire namespace.

1 from z3 import *

The full documentation for this namespace is available at:

https://z3prover.github.io/api/html/namespacez3py.html.

3.1 Defining programs and formulas

Before we can get begin to implement the strongest postcondition generator, we need
a way to represent programs and formulas. Note that in these notes and in the live-
coding demos from lecture, we make use of syntax that is new to Python 3.10, but
the code linked from the course webpage uses syntax that is compatible with earlier
versions of Python 3.

We will assume that terms (expressions) appearing in programs and formulas are
either integer constants, variables, and sums or differences of terms.

1 @dataclass

2 class Const:

3 value: int

4

5 @dataclass

6 class Var:

7 name: str

8

9 @dataclass

10 class Sum:

11 left: Term

12 right: Term

13

14 @dataclass

15 class Difference:

16 left: Term

17 right: Term

18

19 Term = Const | Var | Sum | Difference

Next we define the syntax of formulas. We suffix the constructors with a capital F.
This avoids naming collisions with objects imported from the Z3 API, i.e., Z3 already
exports Not, Or, Implies, etc., and we do not want to override those names.

1 @dataclass

2 class TrueC:

3 _: None

4

5 @dataclass

15-414 LECTURE NOTES MATT FREDRIKSON

https://github.com/Z3Prover/z3/releases
https://github.com/Z3Prover/z3
https://z3prover.github.io/api/html/namespacez3py.html

Bounded Model Checking L17.7

6 class FalseC:

7 _: None

8

9 @dataclass

10 class LtF:

11 left: Term

12 right: Term

13

14 @dataclass

15 class EqF:

16 left: Term

17 right: Term

18

19 @dataclass

20 class NotF:

21 q: Formula

22

23 @dataclass

24 class AndF:

25 p: Formula

26 q: Formula

27

28 @dataclass

29 class OrF:

30 p: Formula

31 q: Formula

32

33 @dataclass

34 class ImpliesF:

35 p: Formula

36 q: Formula

37

38 Formula = TrueC | FalseC | LtF | EqF | NotF | AndF | OrF | ImpliesF

Finally, we define the syntax of programs. Following previous lectures, and in par-
ticular Lecture 11, we will define programs to be assignment, sequential composition,
test, nondeterministic choice, and nondeterministic repitition (iteration).

1 @dataclass

2 class Asgn:

3 left: Var

4 right: Term

5

6 @dataclass

7 class Seq:

8 alpha: Prog

9 beta: Prog

10

11 @dataclass

12 class Test:

13 q: Formula

14

15 @dataclass

16 class Choice:

15-414 LECTURE NOTES MATT FREDRIKSON

L17.8 Bounded Model Checking

17 alpha: Prog

18 beta: Prog

19

20 @dataclass

21 class Iter:

22 alpha: Prog

23

24 Prog = Asgn | Seq | Test | Choice | Iter

Now we have all the constructors that we need to encode simple programs and formu-
las. For example, we can encode a program that increments x as follows:

1 Asgn(Var(’x’), Sum(Var(’x’), Const (1)))

Slightly more involved, a loop that increments x until it reaches 5:

1 Seq(

2 Iter(

3 Seq(

4 Test(LtF(x, Const (5))),

5 Asgn(x, Sum(x, Const (1)))

6)

7),

8 Test(NotF(LtF(x, Const (5))))

9)

We did not provide constructors for some terms and formulas, e.g. multiplication, bit-
wise operations, or quantifiers. These are straightforward to add, and are left as an
exercise.

3.2 Encoding terms and formulas

Moving on, we now consider how to encode instances of Term and Formula using the
Z3 API. We wish to make use of Z3’s theory of bit vectors, which are represented by
the type BitVecRef. The two primary functions of interest to us will be BitVecVal and
BitVec:

1 BitVecVal(value: int , width: int) -> BitVecRef

2 BitVec(name: str , width: int) -> BitVecRef

BitVecVal takes a Python integer value, and a bit vector width, and returns a BitVecRef
that represents the value. BitVec takes a string and bit vector width, and returns a
BitVecRef that represents a bit vector variable of the given width. Z3 treats the type of
BitVecRef instances as being indexed on their width; in general, attempting to perform
operations on BitVecRef’s of different widths will result in a runtime exception.

Now, we define a function term_enc that maps Term objects to their corresponding
representation as BitVecRef. We define the global constant bit_width to ensure that
all BitVecRef objects have a consistent width.

1 bit_width = 32

2

3 def term_enc(e: Term) -> BitVecRef:

4 match e:

15-414 LECTURE NOTES MATT FREDRIKSON

Bounded Model Checking L17.9

5 case Const(value):

6 return BitVecVal(value , bit_width)

7 case Var(name):

8 return BitVec(name , bit_width)

9 case Sum(left , right):

10 return term_enc(left) + term_enc(right)

11 case Difference(left , right):

12 return term_enc(left) - term_enc(right)

Observe that BitVecRef objects overload the infix addition and subtraction operator.
Likewise, multiplication, division, bitwise and/or/xor/complement/shift, unary nega-
tion (“minus”), and relational predicates (==, <, <=, >, >=) are overloaded for these ob-
jects as well.

Moving on, we define a similar encoding function for Formula objects. The relevant
type for these is BoolRef. Similar to how BitVecRef objects are created, the Z3 API ex-
poses BoolVal for constructing Boolean constant values, and Bool for Boolean-valued
variables.

1 def fmla_enc(p: Formula) -> BoolRef:

2 match p:

3 case TrueC(_):

4 return BoolVal(True)

5 case FalseC(_):

6 return BoolVal(False)

7 case LtF(left , right):

8 return term_enc(left) < term_enc(right)

9 case EqF(left , right):

10 return term_enc(left) == term_enc(right)

11 case NotF(p):

12 return Not(fmla_enc(p))

13 case AndF(p, q):

14 return And(fmla_enc(p), fmla_enc(q))

15 case OrF(p, q):

16 return Or(fmla_enc(p), fmla_enc(q))

17 case ImpliesF(p, q):

18 return Implies(fmla_enc(p), fmla_enc(q))

Note that in fmla_enc, we used the Z3 API to construct negation, conjunction, and dis-
junction. While the API overloads Python syntax for many operations on BitVecRef

objects, this is not the case for BoolRef. So, for example, And(P, Q) returns a Z3
BoolRef object that represents the conjunction of P and Q, whereas P and Q raises an
exception:

1 ---

2 Z3Exception Traceback (most recent call last)

3 Input In [27], in <cell line: 2>()

4 1 P, Q = Bools(’P Q’)

5 ----> 2 P and Q

6

7 File z3.py:375, in AstRef.__bool__(self)

8 373 return self.arg (0).eq(self.arg (1))

9 374 else:

10 --> 375 raise Z3Exception (...)

15-414 LECTURE NOTES MATT FREDRIKSON

L17.10 Bounded Model Checking

11

12 Z3Exception: Symbolic expressions cannot be cast to

13 concrete Boolean values.

3.3 Implementing strongest postcondition

We are now in a good position to implement the strongest postcondition generator.
The basic signature that we would like to implement matches our formal definition
of strongest postcondition, taking a program and precondition, a maximum iteration
bound, and returning a new formula:

1 spost(alpha: Prog , P: BoolRef , max_depth: int) -> BoolRef

We might have considered implementing a slightly different signature:
1 spost(alpha: Prog , P: Formula) -> Formula

Pragmatically, this makes little difference, as we can always apply fmla_enc to Formula

objects to obtain a BoolRef. However, defining our generator to both accept and return
BoolRef objects directly will make the code more concise.

For most of the statement forms, the implementation of strongest postcondition is
straightforward, relying primarily on recursive calls to spost. Recall that the strongest
postcondition of sequential composition α;β first computes the strongest postcondition
of α, and uses the result as the precondition to compute the strongest postcondition of
β:

sp(α;β)P = sp(β)(sp(α)P)

This translates easily to the following implementation.
1 case Seq(alpha , beta):

2 return spost(beta , spost(alpha , P), max_depth)

Similarly, the definitions for nondeterministic choice and repetition depend on making
the appropriate composition of results obtained via recursive calls:

sp(α ∪ β)P = sp(α)P ∨ sp(β)P
sp(α∗)P = P ∨ sp(α;α∗)P

This is again an easy translation to code, but we first decrement the maximum iteration
depth before recursing to ensure eventual termination:

1 case Choice(alpha , beta):

2 return Or(spost(alpha , P, max_depth), spost(beta , P, max_depth))

3

4 case Iter(alpha):

5 return Or(P, spost(Seq(alpha , Iter(alpha)), P, max_depth -1))

The test command does not require a recursive call to spost, as the strongest postcon-
dition in this case is the conjunction of the guard formula and the given precondition:

sp(?Q)P = P ∧Q

Translated to code, the only thing to be careful about is ensuring that the conjunction is
over two BoolRef objects:

15-414 LECTURE NOTES MATT FREDRIKSON

Bounded Model Checking L17.11

1 case Test(Q):

2 return And(fmla_enc(Q), P)

The only remaining statement is assignment, which involves variable substitution.

sp(x := e(x))P (x) = ∃x′.x = e(x′) ∧ P (x′)

Fortunately, Z3 provides a function for performing substitution on formulas. Assuming
a helper function fresh_var that returns a fresh new variable name, we implement this
as follows:

1 case Asgn(left , right):

2 next_var = fresh_var(left)

3 right_sub = substitute(term_enc(right),

4 [(term_enc(left), term_enc(next_var))])

5 P_sub = substitute(P, [(term_enc(left), term_enc(next_var))])

6

7 return Exists(term_enc(next_var),

8 And(term_enc(left) == right_sub , P_sub))

Note that because we intend to use spost positively in a satisfiability check, we do not
need the existential quantifier in the case for assignment. We can instead implement
the strongest postcondition for assignment as:

1 case Asgn(left , right):

2 next_var = fresh_var(left)

3 right_sub = substitute(term_enc(right),

4 [(term_enc(left), term_enc(next_var))])

5 P_sub = substitute(P, [(term_enc(left), term_enc(next_var))])

6

7 return And(term_enc(left) == right_sub , P_sub)

The primary advantage of this implementation is that in cases where the formula sp(α)P∧
¬Q is satisfiable, i.e., the Hoare triple is not valid, Z3 will return a satisfying assignment
over all of the intermediate assignments leading up to a counterexample. With the im-
plementation that uses existential quantification, the variables representing intermedi-
ate values are not free in the formula checked by Z3, so they are not included in the
models that it produces.

3.4 Putting it all together

Now that we have our strongest postcondition generator, we can apply it to bounded
model checking. We’ll start with a simple test case to make sure everything works as
expected, verifying the triple:

{x = 0}x := x+ 1 {x = 1}

Recall that to check this triple, we derive sp(x := x+ 1)(x = 0), conjoin the result with
the negated postcondition, x 6= 1, and check satisfiability.

15-414 LECTURE NOTES MATT FREDRIKSON

L17.12 Bounded Model Checking

1 alpha = Asgn(Var(’x’), Sum(x, Const (1)))

2 P = EqF(Var(’x’), Const (0))

3 Q = EqF(Var(’x’), Const (1))

4

5 s = z3.Solver ()

6 s.add(post(alpha , fmla_enc(P)))

7 s.add(fmla_enc(NotF(Q)))

8 s.check ()

As expected, the result is unsat.
Now let’s try a slightly more involved example on an invalid triple, and see how the

approach finds bugs:

{x = 0} (?(x < 10);x := x+ 1)∗; ?(x ≥ 5) {x = 5}

The test in the iteration is not sufficient to ensure the postcondition, and there should be
four counterexamples that demonstrate the problem. A counterexample is an assign-
ment to the variables in the program that violates the triple. When the solver returns
sat (recall, this means that the triple is not valid), we can extract a counterexample from
the model, or satisfying assignment, that it found. enumerate all of the counterexamples
by iteratively adding blocking clauses to the solver’s set of asserted constraints.

1 s = z3.Solver ()

2 s.add(post(alpha , fmla_enc(P)))

3 s.add(fmla_enc(NotF(Q)))

4

5 while s.check() == sat:

6 x_val = s.model().evaluate(term_enc(Var(’x’)),

7 model_completion=True)

8 blocking_clause = Not(term_enc(Var(’x’)) == x_val)

9 s.add(blocking_clause)

10 print(’counterexample: x = {}’.format(x_val))

As shown in this example, blocking clause is a formula that prevents the solver from re-
turning a previously-encountered satisfying assignment. In this context, we just assert
that x is not equal to the current counterexample. Note that we passed the keyword ar-
gument model_completion to s.model().evaluate. This is to ensure that Z3 produces
a value for the variable we are interested in, as in general there is no guarantee that the
solver will need to assign every variable to return sat.

Running this code produces the four possible counterexamples:

1 counterexample: x = 6

2 counterexample: x = 8

3 counterexample: x = 9

4 counterexample: x = 7

When extracting counterexamples, we need not limit ourselves to the final value of
x. Because we did not use the existential quantifier in the strongest postcondition
for assignment, we can see the corresponding intermediate values for x by invoking
s.model().

15-414 LECTURE NOTES MATT FREDRIKSON

Bounded Model Checking L17.13

1 [x_1 = 0,

2 x_2 = 1,

3 x_3 = 2,

4 x_4 = 3,

5 x_5 = 4,

6 x_6 = 5,

7 x = 6,

8 x_7 = 2147483642 ,

9 x_8 = 2147484766 ,

10 x_9 = 2147482530]

Note that the values for x_7-x_9 are arbitrary, as the solver effective chose an execution
of the program that only iterates through the loop body six times.

References

[DMB08] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver.
TACAS’08/ETAPS’08, Berlin, Heidelberg, 2008. Springer-Verlag.

15-414 LECTURE NOTES MATT FREDRIKSON

	Introduction
	Bounded Model Checking
	Computing reachable states

	Implementation with Z3
	Defining programs and formulas
	Encoding terms and formulas
	Implementing strongest postcondition
	Putting it all together

