
15-414: Bug Catching: Automated Program Verification

Lecture Notes on
Bit-Blasting

Matt Fredrikson

Carnegie Mellon University
Lecture 16

Tuesday, March 22, 2022

1 Introduction

In the previous lectures, we have introduced decision procedures for propositional
logic, and saw how to encode values from finite domains into propositional logic for-
mulas. In this lecture, we will expand on the idea of encoding finite domains as propo-
sitional formulas, and show how to encode the semantics of arithmetic and bitwise
operations over machine integers. This technique, colloquially known as bit-blasting, is
implemented by nearly all general-purpose SMT solvers, as well as in numerous ver-
ification tools. In the next lecture, we will see how bit-blasting allows us to reduce
verification problems like those that were the focus of earlier lectures, to propositional
satisfiability.

Learning Goals.

In this lecture, you will learn:

• The theory of finite-width bit-vector arithmetic, which we can use to write verifi-
cation conditions for programs that operate on machine integers.

• Mirroring the use of machine integers in conventional programming languages,
the semantics of operations can depend on whether the value is signed or un-
signed.

• A procedure for deciding bit-vector formulas by reduction to propositional satis-
fiability, known as bit-blasting.

http://www.cs.cmu.edu/~15414/s22

L16.2 Bit-Blasting

2 Review: Propositional Encodings

Recall that in the previous lecture we learned how to encode values from finite domains
in propositional logic using unary and binary representations. The intuition behind
these representations is that an unary representation considers a Boolean variable for
each possible value, while a binary representation considers the binary representation
of an integer.

Suppose we want to encode the domain of an integer variable X = {1, 2, 3}. We can-
not use a single propositional variable to encode the values that an element from this
domain might take, because there are three possible values, and propositional variables
can only be true or false . We will obviously need to encode elements of this domain
using multiple propositional variables, but deciding how many variables and any ad-
ditional constraints that must be introduced raises questions about which encoding is
most appropriate.

Unary representation Consider the auxiliary variables x1, x2, x3. We want to encode
the meaning that xi is true iff X = i. To encode this property we need to encode that:

1. At least one of these variables must occur:
(x1 ∨ x2 ∨ x3)

2. At most one of these variables must occur:
(¬x1 ∨ ¬x2) ∧ (¬x1 ∨ ¬x3) ∧ (¬x2 ∨ ¬x3)

Binary representation Consider the binary representation of integers and the auxil-
iary variables b1, b0. We want to encode the following property:

• If X = 1 then b0 = 0 ∧ b1 = 0

• If X = 2 then b0 = 0 ∧ b1 = 1

• If X = 3 then b0 = 1 ∧ b1 = 0

In this case, the meaning of each variable can be used to implicitly encode the possible
values of X . The only information we need to encode is possible integer values that
are not part of the domain of X . In this case, X = 4 is not part of the domain but can
be encoded using these two variables, therefore we need to disallow this value from
occurring by adding the clause (¬b0 ∨ ¬b1).

Properties of encodings The binary encoding requires fewer variables, and in many
cases, does not require additional constraints to make the encoding faithful to the orig-
inal finite domain. Because of this, it may at first seem to be the most sensible choice
for most settings, but this is not necessarily the case. In fact, the additional constraints
imposed by the unary encoding often prove useful for SAT solvers that employ Boolean
Constraint Propagation, as they encode relationships between the encoding variables

15-414 LECTURE NOTES MATT FREDRIKSON

Bit-Blasting L16.3

that can help prune the solver’s search space. This is embodied by consistency and arc-
consistency, defined below.

Definition 1 (Consistent Encoding). An encoding is consistent if, when given a partial
propositional assignment that is not compatible with any solution to the domain, unit
propagation leads to a conflict.

Definition 2 (Arc-Consistent Encoding). An encoding is arc-consistent if it is consistent,
and additionally unit propagation on a partial assignment discards inconsistent values
for the encoding variables.

While the unary encoding enjoys these properties, and its additional constraints can
aid a solver in deciding whether a formula is satisfiable, in many cases the cardinality of
the domain is simply too large to encode by creating a distinct variable for each possible
value. In such cases, we must opt for a binary encoding, which we will later see when
we consider how to decide bit-vector formulas via propositional satisfiability.

3 Theory of Bit Vector Arithmetic

Computer systems use bit vectors to encode numbers. A bit vector b, as the name sug-
gests, is a finite sequence of binary values of length `. We denote the domain of bit
vectors of length ` as BV`, and the ith bit of a bit vector b as bi.

3.1 Syntax and Semantics

Until now, the logical formulas that we’ve considered have assumed that variables
range over the set of mathematical integers Z. When writing expressions involving
integer variables, we allowed the usual set of operations: addition, subtraction, mul-
tiplication, division, etc. In today’s lecture, we will assume that variables refer to bit
vectors of a given width `. We can still perform the “normal” set of arithmetic oper-
ations on them, but will additionally allow operations like bitwise left and right shift
(�,�), bitwise “and” and “or” (&, |), and bitwise exclusive-or (⊕).

Bit Vector Expressions e ::= b | x | ∼e | e1 + e2 | e1 − e2 | e1 ∗ e2 | e1/e2 |
e1 � e2 | e2 � e2 | e1& e2 | e1 | e2 | e1 ⊕ e2

Note that we have so far used the letter c to denote integer constants, and we now use
b to distinguish the fact that the constant is a bit vector.

Recall that we defined the meaning, or semantics, of expressions in terms of a state ω
that assigns integers to variable symbols. Likewise, we will now assume that a state ω
assigns an element from BV` to variables. Note that for a given variable x, the notation
ω(x) represents a bit vector value, so we may write ω(x)i to refer to its ith bit.

When it comes to defining the value of a bit vector expression e under state ω, we
must decide whether we intend to interpret bit vector values as signed or unsigned. We
will distinguish these cases with the subscript S (for signed) or U (for unsigned) on the

15-414 LECTURE NOTES MATT FREDRIKSON

L16.4 Bit-Blasting

double-bracket notation for term semantics, i.e., JeKS denotes the value of e as a signed
bit vector, and JeKU the value as an unsigned bit vector.

The primary difference between the signed and unsigned cases arises in how we
interpret constants. For unsigned bit vectors, we use the normal binary encoding of
integers.

ωJbKU =

`−1∑
i=0

bi2
i (1)

For signed bit vectors, we use the twos-complement encoding, which interprets the bit
at position `− 1 as the sign bit:

ωJbKS = −b`−12
`−1

`−2∑
i=0

bi2
i (2)

So for example,
ωJ0101KS = 5
ωJ0101KU = 5
ωJ1101KS = −3
ωJ1101KU = 13

Note that the range of integer values assigned to unsigned to unsigned bit vectors is
[0, 2` − 1], whereas for signed bit vectors it is [−2`−1, 2`−1 − 1].

Arithmetic operations on bit vectors must account for the fact that BV` is a finite do-
main. This amounts to doing modular arithmetic over 2`, for both signed and unsigned
bit vectors.

ωJe1 + e2KS,U = ωJe1KS,U + ωJe2KS,U mod 2`

ωJe1 − e2KS,U = ωJe1KS,U − ωJe2KS,U mod 2`

ωJe1 ∗ e2KS,U = ωJe1KS,U ∗ ωJe2KS,U mod 2`

ωJe1/e2KS,U = ωJe1KS,U/ωJe2KS,U mod 2`

. . .

For example, consider taking 5 + 6 in the signed case when ` = 4. Notice that the
result is larger than 2`−1 − 1 = 7, which will result in overflow and the semantics of the
resulting bit vector will be negative:

ωJ0101 + 0110KS = ωJ0101KS + J0110KS mod 2`

= 5 + 6 mod 16
= 11 mod 16
= −5 mod 16
= ωJ1011KS

The left shift operator works identically for both signed and unsigned bit vectors:
when the right operand is d, the least significant ` − d bits are shifted left d positions,
the d most significant bits are truncated, and d zeros are placed in the least significant
positions. The right shift operator works differently depending on whether the left
operand is signed or unsigned; in the unsigned case, the d most significant bits are

15-414 LECTURE NOTES MATT FREDRIKSON

Bit-Blasting L16.5

replaced with zeros, whereas in the signed case they are replaced with copies of the
sign bit. Note that the right operand for any shift operation is always interpreted as
unsigned. In the following, let d = Je2KU :

ωJe1 � e2KS,U = ωJe1,`−d . . . e1,0︸ ︷︷ ︸
`−d bits shifted

0 . . . 0︸ ︷︷ ︸
d zeros

KS,U

ωJe1 � e2KU = ωJ0 . . . 0︸ ︷︷ ︸
d zeros

e1,`−(d+1) . . . e1,d︸ ︷︷ ︸
l−d bits shifted

KS,U

ωJe1 � e2KS = ωJe1,`−1 . . . e1,`−1︸ ︷︷ ︸
d copies of sign bit

e1,`−(d+1) . . . e1,d︸ ︷︷ ︸
l−d bits shifted

KS,U

The bitwise operators behave as expected: we interpret each bit as a Boolean value, and
compute the corresponding logical operation on each pair of corresponding bits.

ωJ∼eKS,U = ωJ¬e`−1 . . . ¬e0KS,U
ωJe1& e2KS,U = ωJe1,`−1 ∧ e2,`−1 . . . e1,0 ∧ e2,0KS,U

...

Finally, the relational operators (≤, =) make use of the appropriate semantics for signed
or unsigned bit vectors, which already map bit vector values to the integers. To spec-
ify which semantics to use, we subscript |= with either S or U . So, for example the
semantics for inequality of two signed bit vectors is simply,

ω |=S e1 ≤ e2 iff ωJe1KS ≤ ωJe1KS
Note, however, that bit vector semantics can lead to surprising results in comparisons
if we do not stay alert. The formula x ≤ x + 1 is valid for mathematical integers, but
not bit vectors of any width–signed or unsigned!

4 Bit-Blasting

There are several ways of determining the validity of bit vector formulas. In this sec-
tion, we will see how to encode a bit vector formula as an equisatisfiable formula in
propositional logic. As discussed previously, the validity of a propositional formula
can be determined by checking the satisfiability of its negation: if the negation is unsat-
isfiable, then the formula is valid.

We will see how this is done in steps by showing how to encode the formula in
Equation 3.

0 < x→ ¬(x+ 1 = 0) (3)

Intuitively, we will proceed first in a similar fashion to the Tseitin encoding for produc-
ing an equisatisfiable CNF formula, by identifying subformulas and subexpressions.
We introduce equivalence constraints for each subexpression, in the manner of the
Tseitin encoding, to reflect the Boolean structure of the original formula. For each dis-
tinct bit vector expression, we will define a corresponding set of ` propositional vari-
ables to encode its value. Finally, we introduce constraints over these propositional
variables that encode the semantics of bit vector operations.

15-414 LECTURE NOTES MATT FREDRIKSON

L16.6 Bit-Blasting

Step 1: Identify subformulas and subexpressions

As shown in our presentation of the Tseitin encoding, a straightforward way to identify
all of the subformulas and expressions of a formula is to represent it as a syntax tree.
The formula in Equation 3 would be represented as shown below on the left. For each
node of the tree, we create a fresh propositional variable that represents the formula or
expression rooted at the node, as shown below on the right.

→

<

0 x

¬

=

0 +

x 1

a

b

d e

c

f

d g

e h
Note that for identical leaf nodes, we will use the same propositional variable for all

instances, as these represent the same variable or constant expression.

Step 2: Encode Boolean structure and bit vector equivalences

Having identified the set of subformulas and expressions, and identified them with
fresh variable symbols, we proceed to derive a set of logical equivalences over these
fresh variables that encodes the Boolean structure of the original formula, and equalities
between bit vector values.

In the running example, this leaves us with the following set of equalities and logical
equivalences.

a ↔ b→ c
b ↔ d < e
c ↔ ¬f
d = 0
e = x
f ↔ d = g
g = e+ h
h = 1

Note that some of these equalities could be optimized away, reducing the size of the en-
coding. For example, d could be replaced with the constant 0 wherever it appears, and
likewise e could be replaced with x. For the sake of keeping the illustration straightfor-
ward, we will leave them as is.

Now that we have identified all of the unique bit vector expressions in the formula,
we construct ` propositional variables for each variable. Above, a, b, c and f are propo-
sitional variables, and d, e, g and h represent bit vectors. We clearly do not need to
represent the propositional variables with ` additional propositional variables, so we
would add 4` propositional variables to represent the bit vectors. In the following text,

15-414 LECTURE NOTES MATT FREDRIKSON

Bit-Blasting L16.7

we will use subscripts on the original bit vector variable name to refer to these propo-
sitional variables, i.e., h0 refers to the variable for the least significant bit of h.

Step 3: Add constraints for bit vector expressions

As this stage, our goal is to replace any equivalence or equality involving a bit vector
with a propositional formula that encodes its semantics. The encoding obviously de-
pends on the set of bit vector operators that appear in the formula. We will discuss
encodings for relational operators and addition, and refer the reader to Kroening &
Strichman [KS08] for details on other operators.

Addition & Subtraction To encode addition, we borrow a page from Boolean circuit
construction, and represent an adder with propositional logic. A full adder is a Boolean
circuit that takes as input two bits x, y, along with a carry-in bit cin , and produces their
sum z along with the carry-out cout . We encode this functionality with two constraints.

z ↔ (x⊕ y)⊕ cin
cout ↔ (x ∧ y) ∨ (cin ∧ x⊕ y)

The single-bit full-adder can be extended to encode the addition z of two `-bit inputs
x, y.

¬c−1

zi ↔ (xi ⊕ yi)⊕ ci−1

ci ↔ (xi ∧ yi) ∨ (ci−1 ∧ xi ⊕ yi)

Note the constraint ¬c−1 to represent that the carry-in bit of the `-bit sum is 0.
Subtraction is encoded using addition, i.e. x− y = x+ (−y). The negative of a twos-

complement value is obtained by taking its bitwise complement and adding 1, which
leads to the following constraints to encode x− y = z.

c−1

zi ↔ (xi ⊕ ¬yi)⊕ ci−1

ci ↔ (xi ∧ ¬yi) ∨ (ci−1 ∧ xi ⊕ ¬yi)

Whereas for addition we constrain the initial carry-in bit c−1 to be false (i.e., 0), for
subtraction we assert that it is true to account for the addition of 1 from negating y.

Equality Equality is straightforward to encode, as it amounts to biimplication of all
pairs of corresponding bits. When x and y represent bit vectors, we encode as follows.

x = y is replaced with
∧`−1

i=0xi ↔ yi

If one side of the equality is a constant, then we just assert the appropriate Boolean
constant. For example, the constraints in our running example include d = 0 and h = 1.

d = 0 is replaced with
∧`−1

i=0¬di
h = 1 is replaced with h1 ∧

∧`−1
i=1¬hi

15-414 LECTURE NOTES MATT FREDRIKSON

L16.8 Bit-Blasting

Inequality The encoding for inequality depends on whether the operands are signed
or unsigned. In either case, the approach first converts x < y to x − y < 0. If the
operands are unsigned, then we assert that the carry-out bit of the subtraction is false .
Note that because we only care about the status of the carry-out bit, we don’t need to
add constraints for the sum component, as we can compute the carry bits incrementally
without keeping track of the sum. We assume that the ci’s are fresh variables in the
encoding below.

c−1

ci ↔ (xi ∧ ¬yi) ∨ (ci−1 ∧ xi ⊕ ¬yi)
¬c`−1

If the operands are signed, then we compare the sign bits of the operands with the
carry-out bit of their difference. If their sign bits are the same, then the carry-out bit
should be false ; otherwise, it should be true . As before, we can ignore the sum bits, and
add constraints sufficient to track the carry bits.

c−1

ci ↔ (xi ∧ ¬yi) ∨ (ci−1 ∧ xi ⊕ ¬yi)
c`−1 ↔ ¬(x`−1 ↔ y`−1)

4.1 Running example

We’ll conclude this section by illustrating the encoding on the running example, for the
simplest case where ` = 1. Recall that we have the following constraints from Step 2.

a ↔ b→ c
b ↔ d < e
c ↔ ¬f
d = 0
e = x
f ↔ d = g
g = e+ h
h = 1

For a single-bit width encoding, we introduce five propositional variables to account
for the values of the bit vector expressions appearing in the formula: d0, e0, g0, h0. We
then encode the equalities d = 0 and h = 1:

¬d0
h0

Next, we account for e = x and f ↔ d = g:

e0 ↔ x0
f ↔ (d0 ↔ g0)

15-414 LECTURE NOTES MATT FREDRIKSON

Bit-Blasting L16.9

Next, we encode g = e+ h:

¬c−1

g0 ↔ (e0 ⊕ h0)⊕ c−1

c0 ↔ (e0 ⊕ h0) ∨ (c−1 ∧ e0 ⊕ h0)

Note that the carry-out bit is not used, and the fact that the carry-in bit is false allows
us to simplify this to:

g0 ↔ e0 ⊕ h0

Now we have encoded all of the bit vector expressions and equalities. All that we have
left is the inequality b ↔ d < e. As we are encoding one-bit numbers, it doesn’t make
much sense to assume that their bitvectors are signed twos-complement, so we just
assume that they are unsigned. Then we ultimately need to assert that b0 is true if and
only if the carry-out bit of d − e is false . Because the variable c is already used in our
constraints, we will use v0 to denote the carry-out of d− e.

v0 ↔ (d0 ∧ ¬e0) ∨ (d0 ⊕ ¬e0)
b ↔ ¬v0

We can simplify this by just eliminating v0:

b ↔ ¬((d0 ∧ ¬e0) ∨ (d0 ⊕ ¬e0))

This leaves us with the following encoding:

¬d0
∧ h0
∧ (e0 ↔ x0)
∧ (g0 ↔ e0 ⊕ h0)
∧ (f ↔ (d0 ↔ g0))
∧ b↔ ¬((d0 ∧ ¬e0) ∨ (d0 ⊕ ¬e0))
∧ c↔ ¬f
∧ (a↔ b→ c) ∧ a

We see that simplifying by propagating ¬d0, h0 and a gives us the following:

∧ f ↔ x0
∧ b↔ x0
∧ c↔ ¬f
∧ b→ c

This is equivalent to ¬x0, which is the unsigned bitvector encoding for a satisfying
assignment (i.e., 0) to 0 < x→ ¬(x+ 1 = 0).

15-414 LECTURE NOTES MATT FREDRIKSON

L16.10 Bit-Blasting

References

[DMB08] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver.
TACAS’08/ETAPS’08, Berlin, Heidelberg, 2008. Springer-Verlag.

[KS08] Daniel Kroening and Ofer Strichman. Decision Procedures: An Algorithmic
Point of View. Springer Publishing Company, Incorporated, 1 edition, 2008.

15-414 LECTURE NOTES MATT FREDRIKSON

	Introduction
	Review: Propositional Encodings
	Theory of Bit Vector Arithmetic
	Syntax and Semantics

	Bit-Blasting
	Running example

