
15-414: Bug Catching: Automated Program Verification

Lecture Notes on
Resolution

Frank Pfenning

Carnegie Mellon University
Lecture 13

Tuesday, March 1, 2022

1 Introduction

In the last lecture we saw the sequent calculus, which has many positive attributes. Se-
quents are an excellent basis for communicating proof goals. With some refinement, it
can serve as a foundation for goal-directed proof search procedures. It is also quite ro-
bust, which means that many logics (we have seen dynamic logic, parts of modal logic,
classical logic, and a glimpse of intuitionistic logic) have formulations in the sequent
calculus. On the other hand, sequent proofs are quite verbose and also lose some of
their intuitive appeal if they have multiple succedents.

Many modern provers, however, are not directly based on the sequent calculus.
Broadly, we can classify those as either being based on resolution in some form or on co-
operating decision procedures, usually in the form of SMT (Satisfiability Modulo Theories)
based on SAT (Satisfiability). In today’s lecture we discuss the rudiments of resolution,
which also represents a bridge between human-oriented and machine-oriented proof
systems. It has the virtue that a resolution proof is quite easy to check, which is not
the case for proofs is carried out by a SAT or SMT solver. Therefore, SAT solvers these
days produce an independently checkable proof certificate, and SMT solvers should (al-
though implementations are not quite as far advanced). One popular format for such a
certificate is in fact a resolution proof.

In this lecture we present only the propositional case (no quantification) and only
binary resolution. There are many refinements and optimizations of resolution which
was one of the dominant methods of automated theorem proving for several decades.
Why3 supports many provers, including provers such as Eprover, Spass, and Vampire
that have their origins in variants of resolution but continue to evolve.

http://www.cs.cmu.edu/~15414/s22

L13.2 Resolution

Learning goals. After this lecture, you should be able to:

• Carry out resolution proofs for propositional logic

• Construct a satisfying assignment from a consistent, saturated theory

• Convert formulas to conjunctive normal form by creating internal names

2 Satisfiability

For today’s lecture we restrict ourselves to propositional formulas. We use lowercase
p, q for atoms which you can also think of as propositional variables. Then our grammar
for propositions is:

Q,P ::= p | P ∧Q | P ∨Q | P → Q | ¬P | > | ⊥

A truth assignment M assigns either true or false to every propositional variable (or
atom, as we say). This is analogous to the state ω in dynamic logic that assigns an
integer to every variable. So, if you like, you can think of propositional theorem proving
as deciding the (quantifier-free) theory of Booleans. We write M |= P if the formula P
is true given the assignment M . This is defined exactly as we did in dynamic logic on
these connectives with one additional clause:

M |= p iff M(p) = true

A convenient way to present a truth assignment is by giving a list of p if M(p) = true
and ¬p if M(p) = false. In principle, this list would have to be infinite, but since every
formula contains only finitely many atoms we can use such a finite representation.

The fundamental question is once again that of validity, that is:

Validity: decide whether M |= P for every truth assignment M .

For reasons that are not entirely clear to me, this is usually turned into a problem of
satisfiability:

Satisfiability: decide whether M |= P for some truth assignment M .

These problems are equivalent in the sense that

P is valid if and only if ¬P is unsatisfiable

which you can easily verify from the definitions. So instead of proving P we try to
refute ¬P by searching for an assignment M such that M |= ¬P . This is also called a
model for ¬P . If no such model exists, then ¬P is unsatisfiable which means that P is
valid. If such a model exists that ¬P is satisfiable, which means that P is not valid. In
this case the model M for ¬P provides a counterexample to the validity of P in the
sense that M 6|= P . Read the previous paragraph at least once more. It’s crucial in
understanding what follows.

15-414 LECTURE NOTES FRANK PFENNING

Resolution L13.3

3 Clausal Form

There is some redundancy among the connectives of (classical) propositional logic. The-
orem proving methods are easier to think about and implement if we can put the for-
mulas into a normal form such that P is satisfiable if and only if its normal form Q is
satisfiable. Moreover, we’d like to be able to take any satisfying assignment M for Q
and translate it to a satisfying assignment for P .

One such normal form is called conjunctive normal form (CNF). A formula is in con-
junctive normal form if it is a conjunction of disjunction of atoms and negated atoms.
That is:

Literal L ::= p | ¬p
Clause D,C ::= ⊥ | L | C ∨D
Theory S, T ::= > | C | S ∧ T

For the algorithms, it is convenient to think of a clause as a set of literals {L1, . . . , Ln}
where we write ⊥ for the empty set. We will still write this as L1 ∨ . . . ∨ Ln. Similarly,
we think of a theory as a sequence of clauses, C0, C1, . . . , Ck.

There are a number of methods to put a propositional formula into an equisatisfiable
clausal form. We’ll see a good one in Section 7. A not particularly efficient one would
first push in negations and then use the laws of distributivity, but this could blow up
the size of the formula exponentially.

In order to satisfy a formula in conjunctive normal form we have to satisfy each
conjunct. On the other hand, it is sufficient to satisfy a single literal in each clause.
If a clause is empty (representing ⊥) then it can not be satisfied by any assignment.
Consequently, a theory containing the empty clause is unsatisfiable.

As a simple running example, consider

P = (p→ (q → r))→ ((p ∧ q)→ r)

with atoms p, q, and r, where we have written some redundant parentheses for clarity.
As a first step, we’ll negate this, repeatedly using the laws (P → Q) ↔ (¬P ∨ Q) and
¬(P → Q)↔ (P ∧ ¬Q).

¬P = ¬((p→ (q → r))→ ((p ∧ q)→ r))
↔ (p→ (q → r)) ∧ ¬((p ∧ q)→ r)
↔ (¬p ∨ (¬q ∨ r)) ∧ (p ∧ q) ∧ ¬r
↔ (¬p ∨ ¬q ∨ r) ∧ p ∧ q ∧ ¬r

At this point we have reached a conjunctive normal form. Written as a theory, labeling
each clause:

¬p ∨ ¬q ∨ r C0

p C1

q C2

¬r C3

It is easy to see that this theory is unsatisfiable. Since it should be read as a conjunction,
all of C1, C2, C3 must be true, forcing that for any model, p and q would have to be true,

15-414 LECTURE NOTES FRANK PFENNING

L13.4 Resolution

and r false. But if p and q are true and r false, then C0 will be false, preventing us from
simultaneously satisfying all clauses.

4 Binary Resolution

Resolution is both the name of a rule of inference and a (nondeterministic) algorithm
searching for a refutation of a theory T . Such a refutation is evidence that the theory is
unsatisfiable. In brief, we add more and more consequences to a theory in the hope of
reaching the empty clause. If we do, we conclude that the original theory was in fact
unsatisfiable because our notion of consequence preserves satisfiability. The other out-
come is that we reach saturation, that is, any further inference would only add clauses
already in the theory. In that case, it will turn out, the theory is satisfiable.

The single rule of inference we use can be written as follows:

p ∨ C ¬p ∨D

C ∨D
resolution

The two premises of the rule are clauses (really: sets of literals), even if we write them
using disjunction, so C has no copy of p and D has no copy of ¬p.

Thinking of the theory as a sequence of clauses C0, . . . , Ck−1, the rule looks like this:

p ∨ C Ci (i < k)
¬p ∨D Cj (j < k)

C ∨D Ck = Ci ./p Cj

Here we have invented a notation for the justification of the new clause Ck as the result
of resolving Ci with Cj .

It is easy to see that this rule is sound in the sense that it preserves the set of models.
To see that, consider an assignment M such that M |= p ∨ C and M |= ¬p ∨ D. We
consider two cases:

1. M(p) = true. Then M |= D since M |= ¬p ∨D. Therefore M |= C ∨D.

2. M(p) = false. Then M |= C since M |= p ∨ C. Therefore M |= C ∨D.

Either way, M is a model of C ∨ D. Since we just extend the theory, any model of the
extended theory will automatically be also a model of the original theory.

If we can obtain the empty clause ⊥ by repeated application of this rule, we know
the original theory cannot be satisfiable. That’s because any all models are preserved,
and the empty clause has no models.

Let’s apply resolution in our example. We draw a line here between our original
sequence of clauses an the further clauses inferred by resolution. You should check you

15-414 LECTURE NOTES FRANK PFENNING

Resolution L13.5

understand the justification of each new clause.

¬p ∨ ¬q ∨ r C0

p C1

q C2

¬r C3

¬q ∨ r C4 = C1 ./p C0

r C5 = C2 ./q C4

⊥ C6 = C5 ./r C3

Since we have derived the empty clause we know the original theory is unsatisfiable.
This is turn means that the original formula we started with (p→ (q → r))→ (p∧q → r)
is valid.

By the way, one reason to think of the theory as a sequence instead of a tree is that we
can reuse intermediate clauses in multiple future inferences. This is not used in this ex-
ample, but it is a frequent occurrence in realistic examples and can save an exponential
amount of space and time.

5 Saturation

When we are not able to reach a contradiction, then by necessity the sequence of clauses
must reach saturation, that is, any further application of resolution will only lead to
clauses already in the sequence. We must reach such a state because if we start with a
finite set of clauses they contain only finitely many literals (say n) from which we can
form at mot 2n distinct clauses.

As an example of saturation, we try to prove

(p→ (q → r))→ (p→ r)

which is not valid. Negating as before, we get the CNF

(¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r

Turning this into a sequence of clauses we get the same as before, except the previous
clause C2 is no longer available.

¬p ∨ ¬q ∨ r C0

p C1

¬r C2

¬q ∨ r C3 = C1 ./p C0

¬q C4 = C3 ./r C2

¬p ∨ ¬q C5 = C0 ./r C2

Besides inferences we have already made, we could also try C1 ./p C5 = ¬q but this is
equal to C4. In other words, we have reach saturation without deducing a contradiction
and we conclude the initial theory is satisfiable.

15-414 LECTURE NOTES FRANK PFENNING

L13.6 Resolution

But what is the satisfying assignment? Robinson’s original paper [Rob65] proves the
completeness of resolution by constructing a model from a saturated theory. Together
with the soundness proof of the last section this means resolution is a sound and com-
plete algorithm for determining satisfiability.

We refer you to the original paper for its correctness, but we show the algorithm. We
assume we have an enumeration

p0, p1, . . . , pn−1

of all the atoms in the saturated theory S. We build up an assignment M by considering
each pi in turn, deciding whether we should set M(pi) = true or M(pi) = false. We use
the representation of such a partial assignment as a set of literals containing pi in the
former case and ¬pi in the latter case.

We use the notation M to denote the negation of all the literals in M . One property
we need is that if C ⊂M then M 6|= C because M falsifies all literals in C. Furthermore,
no extension of M could possibly satisfy C because the truth value for all literals in C
has already been decided.

The basic strategy is to assign truth to an atom unless is is absolutely necessary to
assign it false. This would be the case at stage i if there is a clause C in the saturated
theory such that C ⊆ M ∪ {p}. So in that case we assign p the value false, represented
by adding ¬p to the partial model.

Writing out this process more formally:

M0 = { }
Mi+1 = Mi ∪ {pi} provided there is no C ∈ S s.t. C ⊆Mi ∪ {pi}
Mi+1 = Mi ∪ {¬pi} provided there is a C ∈ S s.t. C ⊆Mi ∪ {p}

M = Mn

Then M |= S, as proved by Robinson.
Lets apply this algorithm to our saturated theory and the order

p, q, r

so n = 3, p0 = p, p1 = q, and p2 = r. For our saturated theory

¬p ∨ ¬q ∨ r C0

p C1

¬r C2

¬q ∨ r C4 = C1 ./p C0

¬q C5 = C4 ./r C2

¬p ∨ ¬q C6 = C0 ./r C2

we obtain the following sequence:

M0 = { }
M1 = {p} since there is no C ⊆ {p} = {¬p}
M2 = {p,¬q} since C5 ⊆ {p, q} = {¬p,¬q}
M3 = {p,¬q,¬r} since C2 ⊆ {p,¬q, r} = {¬p, q,¬r}

15-414 LECTURE NOTES FRANK PFENNING

Resolution L13.7

In this example we can now easily verify that M3 |= S. Since it is a model every clause in
the saturated set, it is of course also a model for the original set of clauses and therefore
a counterexample to satisfiability.

6 Checking Certificates

If we are given a resolution refutation (that is, one deducing ⊥), it is easy to check
that all applications of the resolution rule are correct as claimed. We wouldn’t even
need the intermediate clauses because we can always reconstruct them by calculating
Ci ./p Cj . One can also prune some intermediate clauses by working backwards from
the contradiction and keeping only those clauses involved in its generation.

If we are given a saturated theory without an empty clause, we could easily check
that all rule applications are correct and that any further rule applications will not lead
to new consequences.

An alternative would be for the prover to apply Robinson’s algorithm to construct
a satisfying assignment and use that as a small certificate of satisfiability. A checker
can just take the original theory T and quickly verify that there is a true literal in each
clause. With such a certificate we no longer need the saturated theory at all.

7 The Inverse Method

Even though what we done so far seems closely tied to classical logic in many respects,
such as transforming formulas into conjunctive normal form, resolution actually is
quite robust and can be used for other logics with suitable extensions and modifica-
tions. Briefly, we can derive a resolution calculus from a sequent calculus for a logic.

In fact, the inverse method was developed by Maslov [Mas64] around the same as
resolution by Robinson [Rob65] and it provides and alternative path to understanding
resolution. Maslov’s original calculus is related to a resolution strategy called hyperres-
olution, here we show a less efficient form that relates to binary resolution instead.

To start with, we reformulate the classical sequent calculus from Lecture 12 to think
of the inferences going in the downward direction, instead of the upward direction. For
our example, we just need implication, conjunction, and atoms, so we only show the
relevant rules. One change is that we combine the antecedents and succedents from
the premises in the conclusion. The other change is that we break down the single left
rule for conjunction into two, and similarly for the single right rule for implication. In
the presence of contraction, this is equivalent to the rules before. We also restrict the
identity to atoms, which is not necessary but makes reasoning simpler because we don’t

15-414 LECTURE NOTES FRANK PFENNING

http://www.cs.cmu.edu/~15414/s22/lectures/12-sequents.pdf

L13.8 Resolution

have to look for identical complex formulas on both sides of the turnstile.

p ` p
id

Γ, P, P ` ∆

Γ, P ` ∆
CL

Γ ` Q,Q,∆

Γ ` Q,∆
CR

Γ1 ` P,∆1 Γ2 ` Q,∆2

Γ1,Γ2 ` P ∧Q,∆1,∆2
∧R

Γ, P ` ∆

Γ, P ∧Q ` ∆
∧R1

Γ, Q ` ∆

Γ, P ∧Q ` ∆
∧R2

Γ, P ` ∆

Γ ` P → Q,∆
→R1

Γ ` Q,∆

Γ ` P → Q,∆
→R2

Γ1 ` P,∆1 Γ2, Q ` ∆2

Γ1,Γ2, P → Q ` ∆1,∆2
→L

In this calculus the rules are no longer invertible, but this is no longer a relevant prop-
erty because we intend to use these rules starting from the premises.

Let’s write the proof of our example formula first with the bottom-up sequent calcu-
lus, aggressively eliding antecedents and succedents we no longer need.

p ` p
id

q ` q
id

r ` r
id

q → r, q ` r
→L

p→ (q → r), p, q ` r
→L

p→ (q → r), p ∧ q ` r
∧L

p→ (q → r) ` (p ∧ q)→ r
→R

· ` (p→ (q → r))→ ((p ∧ q)→ r)
→R

To obtain the proof in the forward sequent calculus we only have to expand the ∧L and
→R rules, which are derived rules as follows:

Γ, P,Q ` ∆

Γ, P, P ∧Q ` ∆
∧L2

Γ, P ∧Q,P ∧Q ` ∆
∧L1

Γ, P ∧Q ` ∆
CL

Γ, P ` Q,∆

Γ, P ` P → Q,∆
→R2

Γ ` P → Q,P → Q,∆
→R1

Γ ` P → Q,∆
CR

Expanding these rules gives us a proof of our formula in the forward sequent calculus.
But how could we possibly have found that? If we start from identities p ` p, q ` q and
r ` r, the space of possible sequents we could infer is vast!

Maslov’s idea is that in a backwards proof (in our original sequent calculus) only
subformulas of the endsequent will occur. We can exploit this in two steps:

1. We give new names for each subformula in our goal formula.

2. We specialize the inference rules to these subformulas.

For each of the newly introduced names, we write L+ if it may occur on the right-
hand side of a sequent, and L− if it may occur on the left-hand side of a sequent. This

15-414 LECTURE NOTES FRANK PFENNING

Resolution L13.9

is actually a bit stricter than simply the subformula property, since we also track its
possible place in a sequent. Recall

(p→ (q → r))→ ((p ∧ q)→ r)

Then we introduce a unique new name for each subformula:

L+
0 = L−

1 → L+
2

L−
1 = p+ → L−

3

L+
2 = L−

4 → r+

L−
3 = q+ → r−

L−
4 = p− ∧ q−

Now, for example, the two specialized left rules for L−
4 = p− ∧ q− would be

Γ, p− ` ∆

Γ, L−
4 ` ∆

4L1

Γ, q− ` ∆

Γ, L−
4 ` ∆

4L2

Because the antecedents Γ and ∆ are always propagated from the premises and com-
bined in the conclusion, we omit them in the rules to write the more compactly. We
obtain the following rules:

L−
1 `

` L+
0

0R1

` L+
2

` L+
0

0R2

` p+ L−
3 `

L−
1 `

1L
L−
4 `

` L+
2

2R1
` r+

` L+
2

2R2

` q+ r− `

L−
3 `

3L
p− `

L−
4 `

4L1

q− `

L−
4 `

4L2

What does this have to do with resolution? Since all sequents just consist of the original
atoms or those introduced by naming, we can think of a sequent in the following way:

p1, . . . , pn ` q1, . . . , qm ∼ ¬p1 ∨ . . . ∨ ¬pn ∨ q1 ∨ . . . ∨ qm

This comes from the interpretation of Γ ` ∆ as
∧

Γ→
∨

∆. Let’s looks again at

Γ, p− ` ∆

Γ, L−
4 ` ∆

4L1 ∼
¬p−,¬Γ,∆

¬L−
4 ,¬Γ,∆

4L1 ∼
¬p−, C

¬L−
4 , C

4L1

where the last transformation just lumps together positive and negative literals as we
do with clauses.

The question is how to achieve the inference from premise to conclusion using reso-
lution? We just need a clause

p−,¬L−
4

15-414 LECTURE NOTES FRANK PFENNING

L13.10 Resolution

because the inference
¬p−, C p−,¬L−

4

¬L−
4 , C

is an instance of resolution! In this way, we can express each of the single-premise
inference rules

L−
1 `

` L+
0

0R1

` L+
2

` L+
0

0R2

L−
4 `

` L+
2

2R1
` r+

` L+
2

2R2

p− `

L−
4 `

4L1

q− `

L−
4 `

4L2

as a clause, which becomes the following theory:

L1, L0 (0R1)
¬L2, L0 (0R2)
L4, L2 (2R1)
¬r, L2 (2R2)
p,¬L4 (4L1)
q,¬L4 (4L2)

The two premise rules have to proceed in two steps:

` p+ L−
3 `

L−
1 `

1L
` q+ r− `

L−
3 `

3L

become
¬p, L3,¬L1 (1L)
¬q, r,¬L3 (3L)

For example, the inference on the left is mimicked by the two steps of binary resolution
on the right.

Γ1 ` p,∆1 Γ2, L3 ` ∆2

Γ1,Γ2, L1 ` ∆1,∆2
1L

∼

p, C ¬p, L3,¬L1

L3,¬L1, C ¬L3, D

¬L1, C,D

In order to actually carry out resolution, we need one final clause which expresses that if
we derive L0 (our original goal) then we succeed. But in resolution, success is modeled
as deriving a contradiction, so we have the final clause

¬L0 (S)

Now any resolution step in the resulting theory corresponds to a logical inference in
the forward sequent calculus, where the two-premise rules are done in a “curried” form
requiring two steps. Essentially, as we saw in the example above, the first step generates
a (valid) derived rule of inference.

15-414 LECTURE NOTES FRANK PFENNING

Resolution L13.11

To actually carry out the resolution proof we use something called unit resolution, that
is, if we have a clause with a single literal L we eagerly resolve it with all clauses that
contain its negation ¬L.

L1, L0 C0 = (0R1)
¬L2, L0 C1 = (0R2)
L4, L2 C2 = (2R1)
¬r, L2 C3 = (2R2)
p,¬L4 C4 = (4L1)
q,¬L4 C5 = (4L2)
¬p, L3,¬L1 C6 = (1L)
¬q, r,¬L3 C7 = (3L)
¬L0 C8 = (S)

L1 C9 = C0 ./L0 C8

¬L2 C10 = C1 ./L0 C8

¬p, L3 C11 = C0 ./L1 C6

L4 C12 = C2 ./L2 C10

¬r C13 = C3 ./L2 C10

p C14 = C12 ./L4 C4

q C15 = C12 ./L4 C5

L3 C16 = C14 ./p C11

r,¬L3 C17 = C15 ./q C7

¬L3 C18 = C17 ./r C13

⊥ C19 = C16 ./L3 C18

Even though we can read off the a sequent proof from this resolution refutation, the
order in which the rules are applied do not necessarily model a pure bottom-up or top-
down construction. One can impose strategy to achieve one or the other direction, if
that is desired. Numerous other strategic refinements are possible. We can also build
an efficient prover for intuitionistic logic in this manner (see [MP09]).

We do not prove the correctness of this approach to resolution here, but we hope we
have at least made it plausible by exhibiting the connections to the sequent calculus.

References

[Mas64] S. Maslov. The inverse method of establishing deducibility in the classical
predicate calculus. Soviet Mathematical Doklady, 5:1420–1424, 1964.

[MP09] Sean McLaughlin and Frank Pfenning. Efficient intuitionistic theorem proving
with the polarized inverse method. In R.A.Schmidt, editor, Proceedings of the
22nd International Conference on Automated Deduction (CADE-22)), pages 230–
244, Montreal, Canada, August 2009. Springer LNCS 5663.

[Rob65] J. A. Robinson. A machine-oriented logic based on the resolution principle.
Journal of the ACM, 12(1):23–41, January 1965.

15-414 LECTURE NOTES FRANK PFENNING

	Introduction
	Satisfiability
	Clausal Form
	Binary Resolution
	Saturation
	Checking Certificates
	The Inverse Method

