
15-414: Bug Catching: Automated Program Verification

Lecture Notes on
Loops

Frank Pfenning

Carnegie Mellon University
Lecture 7

February 8, 2022

1 Introduction

At a high level, here is what our formalization efforts have been so far:

1. We defined a formal language of arithmetic expressions e and states ω as a map from
variables to integer values. The meaning of an expression in a given state is some
integer c. We used ωJeK = c to define the meaning of expressions by cases based
on the form of e. This definition may seem superfluous, but it provides a means to
interpret the syntax of expressions with their mathematical meaning as integers.

2. We defined a formal language of programs α with statements for assignment, se-
quential composition, conditionals, while loops, and guards. Because we would
like to allow for cases where programs are nondeterministic the meaning of a
program is given as a relation between an prestate ω and a poststate ν, written as
ωJαKν. This is defined by analyzing the structure of the program α.

3. We defined a formal language of formulas P with the usual logical operators like
conjunction, disjunction, implication, negation and also universal and existential
quantification over integers. The basic formulas are equality and inequality of ex-
pressions. Formulas do double duty: they are used in our language of programs
for conditionals, while loops, and guards, but they are also intended to be used
for reasoning about the meanings of programs. The meaning of formulas is defined
mathematically with ω |= P which tells us when the formula P is true in state ω.

4. We add to the language of formulas two modal operators that reference programs,
[α]P (P is true in every possible poststate of α) and 〈α〉P (P is true in some post-

http://www.cs.cmu.edu/~15414/s22

L7.2 Loops

state of α). We extend the definition for the meaning of formulas to account for
the new constructs. We call this new logic (deterministic) dynamic logic.

5. In order to facilitate reasoning, we developed some axioms that allow us to break
down formulas [α]P that speak about programs α into properties of subprograms
of α. As axioms they must be valid, that is, be true in all possible states.

The tasks remaining after the last lecture are axioms for assignments and while loops.
Also, we only gave one small example of an axiom for 〈α〉P , focusing on reasoning
about partial correctness instead of total correctness. In this lecture we first analyze
assignments and then loops, both with respect to partial correctness, that is, writing
axioms for [α]P .

Informally, we already understand how this is done, for example, in Why3. We hy-
pothesize a loop invariant and then prove that (a) it holds initially, (b) it is preserved,
and (c) it implies the postcondition. To arrive at this form of reasoning for loops will
take us all lecture, partly because we take a detour via nondeterministic dynamic logic. It
turns out this formalism allows us to explore the issues surrounding loops in a simpli-
fied form to understand the essence of the problem and its solution. We then port the
solution back.

Learning goals. After this lecture, you should be able to:

• Express and prove programs in (nondeterministic) dynamic logic

• Reason about repetition in dynamic logic

• Justify reasoning principles for loops as modal axioms

• Prove while loops in (deterministic) dynamic logic

2 Summary: Axioms for Dynamic Logic So Far

[α ; β]Q ↔ [α][β]Q
[?P]Q ↔ (P → Q)
[if P αβ]Q ↔ (P → [α]Q) ∧ (¬P → [β]Q)

3 Assignment

The first instinct might be the following axiom for assignment

[x← e]P ↔ (x = e→ P) (WRONG)

However, this is not valid and could therefore lead to unsound reasoning. The cause is
the same as why in the informal generation of verification conditions we modeled as-
signment by creating a fresh “primed” variable. For example, the following is certainly
not valid

6|= x = 3→ [x← x+ 1](x = 17)

15-414 LECTURE NOTES FRANK PFENNING

Loops L7.3

since computing x← x+1 will set x to 4 but the postcondition requires x to be 17. With
the wrong axiom we could prove

(x = 3→ [x← x+ 1]x = 17)↔ (x = 3→ ((x = x+ 1)→ x = 17))

and the right-hand side is true since x = x+ 1 is contradictory.
There are two ways out: one is to carefully substitute e for x with a so-called uniform

substitution. The other is to rename the variable x, something we also did when gener-
ating a verification condition for a loop. This is handled by quantification over a fresh
variable that does not occur in P . We write P (x) for a formula P with (possible) occur-
rences of x, and then P (x′) for the result of renaming all occurrences of x to x′. Then
our axiom becomes

[x← e]P (x)↔ (∀x′. x′ = e→ P (x′))

It is important for soundness that x′ is a variable that does not already occur in e or
P (x). We often refer to this as a “fresh variable”.

Our example no longer gives us a contradiction, because

(x = 3→ [x← x+ 1]x = 17)↔ (x = 3→ ∀x′. x′ = x+ 1→ x′ = 17)

is false as it should be.
Let’s use our swap program as an example for generating a verification condition

using the two axioms we already have. We would like to to prove

x = a ∧ y = b→ [x← x+ y ; y ← x− y ; x← x− y]x = b ∧ y = a

We use the axiom for sequential composition twice, to reduce this to

x = a ∧ y = b→ [x← x+ y]([y ← x− y]([x← x− y](x = b ∧ y = a)))

Now we can use the axiom for assignment (and pull out the quantifier)

x = a ∧ y = b→ x′ = x+ y → [y ← x′ − y]([x′ ← x′ − y](x′ = b ∧ y = a))

We use it once more

x = a ∧ y = b→ x′ = x+ y → y′ = x′ − y → [x′ ← x′ − y′](x′ = b ∧ y′ = a)

and a third time

x = a ∧ y = b→ x′ = x+ y → y′ = x′ − y → x′′ = x′ − y′ → (x′′ = b ∧ y′ = a)

At this point we have eliminated the programs and have a formula in pure arithmetic.
This is the verification condition for the original program that no longer references any
code. Substituting out the assumptions we find x′ = a + b, y′ = a, x′′ = b so the
conclusion x′′ = b ∧ y′ = a is true and the whole formula is valid.

15-414 LECTURE NOTES FRANK PFENNING

L7.4 Loops

4 While Loops

It is easy to come up with an axiom, based on the intuition for conditionals and se-
quences, embodying the semantics of the while loop.

[whileP α]Q↔ (P → [α][while Pα]Q) ∧ (¬P → Q)

Unfortunately, this does not reduce the complexity of the program, since whileP α reap-
pears on the right-hand side.

In the next lecture we learn how to address this issue and come up with a better
axiom to reason about while loops.

5 Nondeterministic Dynamic Logic

What we call nondeterministic dynamic logic is what most sources just call “dynamic
logic”. The idea is to replace the conditionals by nondeterministic choice α ∪ β, and
while loops by nondeterministic repetition α∗.

Programs α, β ::= x← e | α ; β | ?P | α ∪ β | α∗

The nondeterministic choice α ∪ β executes either α or β. The repetition α∗ executes α
one of 0, 1, 2, . . . number of times in succession.

This is an effort to reduce conditionals and while loops to simpler building blocks
and also exploit what has been learned in the study of regular expressions and Kleene
algebra.

The formal semantics of these is a straightforward simplification of the semantics
for conditionals and while loops. That’s because we already set up the semantics to be
relation between states.

ωJα ∪ βKν iff ωJαKν or ωJβKν
ωJα∗Kν iff there exists an n ≥ 0 such that ωJαKnν

ωJαK0ν iff ω = ν
ωJαKn+1ν iff there exists µ such that ωJαKµ and µJαKnν

We can express the original conditionals while loops using guards and the new con-
structs.

if P αβ , (?P ; α) ∪ (¬?P ; β)

whileP α , (?P ; α)∗ ; ?¬P
You should convince yourself that the left-hand and right-hand sides of these notational
definitions have the same meaning, that is, they relate the same states ωJ−Kν.

Furthermore, we can capture the meaning with new axioms, again simplifying the
old ones for conditionals and while loops.

[α ∪ β]P ↔ [α]P ∧ [β]P
[α∗]P ↔ P ∧ [α][α∗]P

We observe that the axiom for repetition α∗ has the same flaw as the axiom for while
loops.

15-414 LECTURE NOTES FRANK PFENNING

Loops L7.5

6 The Induction Axiom for Repetition

As a simple example of repetition, consider

[?(n = 0) ; (n← n+ 2)∗]even(n)

The even predicate is easy to define in arithmetic (even(n) , ∃k. 2k = n). We see that
the property above should hold, because no matter how often n is incremented by
2 it will always remain even. The question is how to prove that in dynamic logic—
mathematically we can always do an induction over the number of iterations. We can
break off the precondition so it becomes

n = 0→ [(n← n+ 2)∗]even(n)

An attempt might be

[α∗]Q
?↔ Q ∧ (Q→ [α]Q)

with the idea that Q on the right-hand side expresses that is must be true initially, and
that Q → [α]Q shows that Q is preserved by one iteration of the loop. Unfortunately,
this gives us exactly that—it does not show that Q is preserved by an arbitrary number
of iterations. In order to get that, we need to say that, after an arbitrary number of
iterations, Q is still preserved by one more iteration.

[α∗]Q↔ Q ∧ [α∗](Q→ [α]Q)

This seems plausible, but it suffers from the same defect we had worried about before:
α∗ appears on both sides. Please, have some faith in me for a moment that we’ll be able
to address that while we show that this axiom is indeed valid.
Proof. While not strictly necessary, it is perhaps easiest to understand the proof if we
reformulate it in mathematics as follows:

(For all n ≥ 0, ω |= [αn]Q)
iff
(ω |= Q and for all k ≥ 0, ω |= [αk](Q→ [α]Q)

Here [αn]Q means that Q is true after n iterations of α. We prove each direction sepa-
rately.
“−→”

Assume for all n ≥ 0 we have ω |= [αn]Q (1)
To show ω |= Q we use (1) for n = 0.
It remains to show that ω |= [αk](Q→ [α]Q).
For that, it is sufficient to prove ω |= [αk][α]Q (ignore the additional assumption Q).
But that’s the same as ω |= [αk+1]Q which follows from (1) with n = k + 1.

“←−”

15-414 LECTURE NOTES FRANK PFENNING

L7.6 Loops

Assume ω |= Q (1)
and for all k ≥ 0, ω |= [αk](Q→ [α]Q). (2)

We prove by induction on n that for all n ≥ 0, ω |= [αn]Q.
Base: n = 0. Then [αn]Q = Q and ω |= Q is exactly (1).
Step: n = m+ 1. Assume ω |= [αm]Q. (3)
We use (2) with k = m to obtain ω |= [αm](Q→ [α]Q).
The modality distributes over implication (see below)

so we obtain ω |= [αm]Q implies ω |= [αm][α]Q.
From this implication and (3), we get ω |= [αm][α]Q

and that is the same as ω |= [αm+1]Q.
This is what we needed to complete the induction step.

It is easy to show that the axiom

[α](P → Q)→ ([α]P → [α]Q)

is valid, that is, the box modality distributes over implication: if in every poststate of α
we have both P → Q and P , then we also have Q in the same poststate.

7 Validity and Loop Invariants

We now return to the induction axiom—thank you for your patience!

[α∗]Q↔ Q ∧ [α∗](Q→ [α]Q)

How can we actually use this? Let’s think back to the early lectures and loop invariants.
We verified that the invariant (here Q) is true initially (the proof of Q on the right-hand
side), and then we verified the loop invariant is preserved forgetting the concrete informa-
tion we had when we first arrived at the loop. Here, this would correspond to proving that
Q → [α]Q is valid, which means it is true for any state. This is important because we
want to show the preservation of Q no matter how many times we have already been
around the loop.

In order to express this kind of reasoning as an axiom we need to be able to say that
“P is valid” inside the logic. This is the purpose of the necessity modality �P , which
was actually inspiration for [α]P in dynamic logic, except P has to be true for any state,
not just for the poststates of α.

Formulas P ::= e1 ≤ e2 | . . . | [α]P | 〈α〉P | �P

We define
ω |= �P iff ν |= P for any ν

We then can prove an axiom
�P → [α]P

Our axiom for reasoning with invariants then becomes

[α∗]Q← Q ∧�(Q→ [α]Q)

15-414 LECTURE NOTES FRANK PFENNING

Loops L7.7

This is no longer a bi-implication, but only a right-to-left implication (Q ← P means
Q is implied by P). That’s because there are other ways to prove a loop (for example,
unrolling it a finite number of times). The new axiom is clearly sound, which we can
establish directly:

[α∗]Q↔ (Q ∧ [α∗](Q→ [α]Q))
and (Q ∧ [α∗](Q→ [α]Q))← (Q ∧�(Q→ [α]Q))

Returning to our earlier example, we can now prove

n = 0→ [(n← n+ 2)∗]even(n)

by reducing it to

n = 0→ even(n) ∧�(even(n)→ [n← n+ 2]even(n))

Critically, there is no longer any iteration involved, and we can eliminate the remaining
references to programs. The first conjunct is easy since even(0). Then we have to prove

n = 0→ �(even(n)→ [n← n+ 2]even(n))

Because we have to show validity, we lose the assumption n = 0. Using the axiom for
assignment, this comes down to

even(n)→ (∀n′. n′ = n+ 2→ even(n′))

which is clearly valid, that is, true for any value of n. We can even map this back to
plain arithmetic as the obvious

∀n. even(n)→ (∀n′. n′ = n+ 2→ even(n′))

8 Strengthening the Loop Invariant

As your experience with Why3 has undoubtedly shown, we sometimes need to strengthen
the loop invariant to make our verifications go through. This is the same phenomenon
as having to generalize an induction hypothesis. Let’s return to everyone’s favorite ex-
ample, the computation of Fibonacci numbers. This time, we write a nondeterministic
loop.

[a← 0 ; b← 1 ; (a, b← b, a+ b)∗](∃i. a = fib(i))

To save space, we used the simultaneous assignment of b to a and a+ b to b (which, by
the way, is available in Why3 and is a simple shorthand). It would be nice to say exactly
which Fibonacci number we have computed, so also we also compute i.

[a← 0 ; b← 1 ; i← 0 ; (a, b← b, a+ b ; i← i+ 1)∗]a = fib(i)

After a couple of steps of proof, we are left with

a = 0 ∧ b = 1 ∧ i = 0→ [(a, b← b, a+ b ; i← i+ 1)∗]a = fib(i)

15-414 LECTURE NOTES FRANK PFENNING

L7.8 Loops

Unfortunately, we cannot prove this now, because our loop invariant a = fib(i) is too
weak. We also need to know that b = fib(i+ 1).

Before we finish the example, let’s consider how we prove [α∗]Q more generally. We
want to be able to use an arbitrary loop invariant J and then show three properties: J is
true initially, J is preserved by the loop, and J implies the postcondition. The last two
properties require validity.

[α∗]Q← J ∧�(J → [α]J) ∧�(J → Q)

For
Jfib = (a = fib(i) ∧ b = fib(i+ 1))

we obtain the following three proof obligations.

a = 0 ∧ b = 1 ∧ i = 0→ Jfib true initially
�(Jfib → [(a, b← b, a+ b ; i← i+ 1)]Jfib) preserved
�(Jfib → a = fib(i)) implies postcondition

9 Back to While Loops

Recall the definition
whileP α , (?P ; α)∗ ; ?¬P

We can plug this in to the axiom we have for repetition and reason, assuming we have
settled on a loop invariant J .

[whileP α]Q ↔ [(?P ; α)∗ ; ?¬P]Q
↔ [(?P ; α)∗][?¬P]Q
↔ [(?P ; α)∗](¬P → Q)
← J ∧�(J → [?P ; α]J) ∧�(J → (¬P → Q))
↔ J ∧�(J → (P → [α]J)) ∧�(J ∧ ¬P → Q)
↔ J ∧�(J ∧ P → [α]J) ∧�(J ∧ ¬P → Q)

This expresses logically and concisely what we have studied earlier regarding reason-
ing about while loops with loop invariants. It does not yet cover total correctness, that
is, reasoning about variants and the termination of loops. We will return to them in a
future lecture.

10 Aside: Regular Expressions Revisited1

1not covered in lecture

15-414 LECTURE NOTES FRANK PFENNING

Loops L7.9

Except for assignment, we can recognize that regular expressions are related to pro-
grams in dynamic logic as shown in the following table of correspondences.

Regular Expression Dynamic Logic
r · s α ; β
1 skip (= ?true)

r + s α ∪ β
0 abort (= ?false)
r∗ α∗

a ??
?? x← e

The prestate would be the input word and the poststate the remaining word after the
program (= regular expression) has matched an initial segment of the word. We see
there are no general guards in regular expressions, and the effect of an assignment has
been replaced by the effect of reading a character in the input word.

15-414 LECTURE NOTES FRANK PFENNING

	Introduction
	Summary: Axioms for Dynamic Logic So Far
	Assignment
	While Loops
	Nondeterministic Dynamic Logic
	The Induction Axiom for Repetition
	Validity and Loop Invariants
	Strengthening the Loop Invariant
	Back to While Loops
	Aside: Regular Expressions Revisited

