
Assignment 4
Diamonds in the Rough

15-414: Bug Catching: Automated Program Verification

Due 23:59pm, Tuesday, March 30, 2021
85 pts

This assignment is due on the above date and it must be submitted electronically on Grade-
scope. Please carefully read the policies on collaboration and credit on the course web pages at
http://www.cs.cmu.edu/~15414/assignments.html.

What To Hand In

You should hand in the following files on Gradescope:

• Submit the file asst4.zip to Assignment 4 (Code). You can generate this file by running
make handin. This will include your solutions ubarray.mlw, ind.mlw, and the proof sessions
in ubarray/ and ind/

• Submit a PDF containing your answers to the written questions to Assignment 4 (Written).
You may use the file asst4-sol.tex as a template and submit asst4-sol.pdf.

Make sure your session directories and your PDF solution files are up to date before
you create the handin file.

Using LaTeX

We prefer the answer to your written questions to be typeset in LaTeX, but as long as you hand
in a readable PDF with your solutions it is not a requirement. We package the assignment source
asst4.tex and a solution template asst4-sol.tex in the handout to get you started on this.

ASSIGNMENT 4 DUE 23:59PM, TUESDAY, MARCH 30, 2021
85 PTS

http://www.cs.cmu.edu/~15414/assignments.html

Diamonds in the Rough HW4.2

1 Box vs. Diamond (25 pts)

In dynamic logic, we define the semantics of negation

ω |= ¬P iff ω 6|= P

Under this definition it is easy to check, for example, that ¬¬P ↔ P is valid. In the tasks below
you may use this and the other usual De Morgan laws for (classical) propositional reasoning with
negation. Like the [α] and 〈α〉, we follow the convention that the unary operators bind more
tightly than binary ones, so [α]¬P → ¬Q stands for ([α](¬P))→ (¬Q).

For each of the following two implications, either prove its validity or find a counterexample.

Task 1 (5 pts). ¬[α]P → 〈α〉¬P
Task 2 (5 pts). ¬〈α〉P → [α]¬P
Task 3 (5 pts). What can you conclude about the relationship of [α] and 〈α〉 in dynamic logic in
general?

Task 4 (10 pts). In view of what you discovered in Tasks 1–3, can you justify the axioms regard-
ing the following constructs directly from the axioms for [−]Q, without explicitly referencing the
semantic definitions?

(i) 〈α ; β〉Q

(ii) 〈?P 〉Q

(iii) 〈α ∪ β〉Q

2 Unbounded Arrays (40 pts)

In this problem we explore the use of verification to certify resource bounds using amortized
analysis. We also revisit data structure invariants, ghosts, and illustrate how to handle data that
admit a null value.

An unbounded array has constant time set and get operations, just like ordinary arrays, but we
can also extend their domain by adding elements at the end or shrink their domain by removing
elements from the end. Moreover, we specify that add and remove should have constant-time
amortized cost. We fix the cost model by specifying

A write operation to an array requires one unit of work; all other operations are free.

You can find a description of unbounded arrays and their amortized analysis at 11-ubarrays.pdf
from 15-122 Principles of Imperative Computation.

In WhyML we represent an unbounded array with

1 type uba ’a = { mutable size : int ;

2 mutable limit : int ;

3 mutable data : array (option ’a) ;

4 mutable ghost potential : int }

ASSIGNMENT 4 DUE 23:59PM, TUESDAY, MARCH 30, 2021
85 PTS

https://www.cs.cmu.edu/~15122/handouts/11-ubarrays.pdf

Diamonds in the Rough HW4.3

The data array contains elements Some x in its domain but may also have some unused elements.
The size field represents the current domain of the unbounded array. We can apply get and set

to any index 0 ≤ i < size. limit is the actual length of the underlying data array that has been
allocated, with elements size ≤ i < limit being reserved for expansion of the domain.

The ghost field potential represents the available potential (or number of “tokens”) in the
data structure, which must always remain nonnegative. According to our cost model, each token
permits one array write operation. Each operation that entails a write, namely set, add, and rem

is given a certain amount of potential. Any potential not immediately used is stored in the ghost
field for later use. The stored potential is necessary to copy the array content whenever a new
underlying data array is allocated, which happens when the domain becomes too large or too
small. Further specifics are given with the operations below.

Implement the operations on unbounded arrays according to the following specs.

(i) new (size : int) (default : ’a) : uba ’a

Allocate and return a new unbounded array with initial domain size size and limit 2*size
(or 1 when size is 0). The array should be initialized with the given default element. Allo-
cation incurs no cost in our model.

(ii) len (u : uba ’a) : int

Return the current size of the domain of u.

(iii) get (u : uba ’a) (i : int) : ’a

Get the element at index i of u.

(iv) set (u : uba ’a) (i : int) (x : ’a) (ghost p : int)

Set the element at index i of u to be x. This requires 1 token which should be passed as p.

(v) add (u : uba ’a) (x : ’a) (ghost p : int)

Add a new element at the end of u, expanding it domain. This requires 3 tokens: 1 to perform
the write, and 2 to save. If adding an element fills the array completely, double the length of
the array and copy the elements in the domain to the new array.

(vi) rem (u : uba ’a) (ghost p : int) : ’a

Remove an element from the end of u, shrinking its domain. This costs 2 tokens: 1 to over-
write the element to be None and 1 to save. When the domain is only one fourth of the length
of the array or smaller, cut the length of the array in half and copy the elements in the domain
to the new array. A precondition should require that rem cannot be called on an unbounded
array with empty domain.

In order to implement the cost model, every array write operation is followed by a decre-
ment of the potential. Also, each function that receives tokens adds them to the potential of the
unbounded array. As an example, we show the (incompletely specified) set function.

1 let set (u : uba ’a) (i : int) (x : ’a) (ghost p : int) =

2 requires { 0 <= i < u.size } (* i must be in domain *)

3 requires { p = 1 } (* amortized cost of ’set’ is 1 *)

4 ... (* more contracts as needed *)

5 ghost (u.potential <- u.potential + p) ; (* store received potential *)

6 u.data[i] <- Some x ;

7 ghost (u.potential <- u.potential - 1) (* pay for write *)

ASSIGNMENT 4 DUE 23:59PM, TUESDAY, MARCH 30, 2021
85 PTS

Diamonds in the Rough HW4.4

The data structure invariants are simpler if the array can only be expanded but not shrunk.
We therefore recommend the following sequence of tasks, even if you should hand in just one file
ubarray.mlw at the end.

Task 5 (5 pts). Specify the data structure invariants of unbounded arrays, including the require-
ment that potential remain nonnegative. For this task, you may restrict attention to domain exten-
sion with the add operation and ignore rem.

Task 6 (25 pts). Implement and verify the new, len, get, set, and add operations. Verification of
contracts should guarantee the intended meaning of each operation and, together with the data
structure invariants, the correct amortized cost if each operation.

Task 7 (10 pts). Implement the rem operation and update the data structure invariants to guarantee
the correctness of the amortized analysis.

3 Induction (20 pts)

Prove the following theorems in Why3, using the int.SimpleInduction module. Your proofs
should be in a file ind.mlw.

Task 8 (5 pts).
i=n∑
i=0

i2 =
n(n+ 1)(2n+ 1)

6

Task 9 (5 pts).
i=n∑
i=0

i3 =

(
n(n+ 1)

2

)2

Task 10 (10 pts). The correctness of the formula for Pascal’s triangle (see Pascal’s Triangle on
Wikipedia): The entry in row n, column k for 0 ≤ k ≤ n is(

n

k

)
=

n!

k! (n− k)!

ASSIGNMENT 4 DUE 23:59PM, TUESDAY, MARCH 30, 2021
85 PTS

https://en.wikipedia.org/wiki/Pascal%27s_triangle

	Box vs. Diamond (25 pts)
	Unbounded Arrays (40 pts)
	Induction (20 pts)

