
Assignment 3
Dynamic Duo

15-414: Bug Catching: Automated Program Verification

Due 23:59pm, Thursday, March 4, 2021
90 pts

This assignment is due on the above date and it must be submitted electronically on Grade-
scope. Please carefully read the policies on collaboration and credit on the course web pages at
http://www.cs.cmu.edu/~15414/assignments.html.

What To Hand In

You should hand in the following files on Gradescope:

• Submit the file asst3.zip to Assignment 3 (Code). You can generate this file by running
make handin. This will include your solutions partition.mlw, array-sum.mlw, and the
proof sessions in partition/ and array-sum/

• Submit a PDF containing your answers to the written questions to Assignment 3 (Written).
You may use the file asst3-sol.tex as a template and submit asst3-sol.pdf.

Make sure your session directories and your PDF solution files are up to date before
you create the handin file.

Using LaTeX

We prefer the answer to your written questions to be typeset in LaTeX, but as long as you hand
in a readable PDF with your solutions it is not a requirement. We package the assignment source
asst3.tex and a solution template asst3-sol.tex in the handout to get you started on this.

ASSIGNMENT 3 DUE 23:59PM, THURSDAY, MARCH 4, 2021
90 PTS

http://www.cs.cmu.edu/~15414/assignments.html

Dynamic Duo HW3.2

1 Lather, Rinse, Repeat (30 pts)

In this problem we study a repeat-until loop as an alternative to a while loop in our DL language.
Informally, the repeatαP loop executes α and then tests P . If P is true it exits the loop, and if P is
false it repeats it.

Task 1 (10 pts). Provide a semantics of the new construct by specifying when ωJrepeatαP Kν holds.

Task 2 (5 pts). The most straightforward (but relatively difficult to use) axiom for while loops in
dynamic logic is [whileP α]Q ↔ (P → [α][whileP α]Q) ∧ (¬P → Q). Give a corresponding axiom
for the repeat loop.

Task 3 (5 pts). Express the repeat-until loop using the constructs of nondeterministic dynamic
logic where the conditional and while loop have been replaced by nondeterministic choice and
repetition.

Task 4 (10 pts). Provide an axiom for reasoning with loop invariants for repeat-until loops

[repeatαP]Q← . . .

where the right-hand side only refers to [α] , � , P , Q, and a loop invariant J .

2 Looking into the Past (30 pts)

In ordinary modal logic there is a �P modality that expresses “P has always been true”. We can
extend dynamic logic with a corresponding operator LαMP read as “before α P”. Its semantics is
defined by

ω |= LαMP iff for all µ such that µJαKω we have µ |= P

For each of the following parts, develop axioms for nondeterministic dynamic logic that allow you
to break down proving LαMP into properties of smaller programs or eliminate them altogether. You
only need to prove one direction of one of these properties (see Task 9) but it may be helpful to
convince yourself your answers are correct.

Task 5 (5 pts). Lα ; βMP

Task 6 (5 pts). Lα ∪ βMP

Task 7 (5 pts). L?QMP

Task 8 (5 pts). Lα∗MP . In this task, both sides can refer to α∗.

Task 9 (10 pts). Prove one direction of one of the axioms from Tasks 5–8. For this purpose assume
ω |= ONESIDE and prove that ω |= OTHERSIDE for an arbitrary ω. Since ω is arbitrary this means
that the implication is valid. The proof regarding sequential composition in Lecture 6, Section 5
provides a good model for the format and level of detail we expect.

3 Partition Party (15 pts)

This problem exercises the often tricky aspects of modifying a data structure in place—in this case
a simple array of integers.

ASSIGNMENT 3 DUE 23:59PM, THURSDAY, MARCH 4, 2021
90 PTS

http://www.cs.cmu.edu/~15414/lectures/06-dynamiclogic.pdf

Dynamic Duo HW3.3

Write and verify a function partition (a : array int) : int that permutes the elements
of the array a in place so that all negative numbers precede all nonnegative numbers. The value
returned is the index of the first nonnegative number in the resulting array, or a.length if the
numbers are all negative.

You can find a solution template in file partition.mlw.
Hint: the standard libraries array.ArrayPermut and array.ArraySwap may be helpful.

4 Don’t Go Into Debt (15 pts)

This problem introduces the concept of an exception in WhyML, which may be helpful in some
of the later programming assignments or mini-projects. We briefly summarize the constructs rel-
evant to this problem (for more information see the Why3 Manual).

exception exn τ∗ declare exn with arguments of type τ∗

raise exn e∗ raise exn with arguments e∗

And the function contract
raises {exn → P}

verifies the postcondition P if exn is raised inside the function and propagates to the caller.
Write and verify a function sum_array (a : array int) : int that sums the elements of the

array a from left to right. If the partial sum ever becomes negative, the function should short-
circuit by raising Negative i, where i is the index of the array at which the sum first became
negative. For example, calling sum_array [2,-1,3,-5,8] should raise Negative 3, since 2 +
(−1) + 3 + (−5) < 0.

You can find a solution template in the file array-sum.mlw.
Hint: You may find the standard library module array.ArraySum helpful.

ASSIGNMENT 3 DUE 23:59PM, THURSDAY, MARCH 4, 2021
90 PTS

http://why3.lri.fr/manual.pdf

	Lather, Rinse, Repeat (30 pts)
	Looking into the Past (30 pts)
	Partition Party (15 pts)
	Don't Go Into Debt (15 pts)

