
15-414: Bug Catching: Automated Program Verification

Lecture Notes on
SMT Theories &

Deciding Uninterpreted Functions

Ruben Martins

Carnegie Mellon University
Lecture 17

Thursday, March 21, 2024

1 Introduction

In previous lectures, we studied decision procedures for propositional logic. However,
verification conditions that arise in practice often combine expression from different
theories. Consider the following examples:

• A combination of linear arithmetic and uninterpreted functions:

(x2 ≥ x1) ∧ (x1 − x3 ≥ 2) ∧ (x3 ≥ 0) ∧ f(f(x1)− f(x2)) ̸= f(x3)

• A combination of linear arithmetic and arrays:

x = v{i← e}[j] ∧ y = v[j] ∧ x > e ∧ x > y

In this lecture, we will present several examples of SMT theories. We will also take a
closer look at the theory of equality with uninterpreted functions and see how we can
solve it with a congruence closure algorithm.1

Learning Goals

• SMT theories and specifialized procedures to solve formulas that only use a given
theory.

1Lecture notes based on [BM07] and [KS16].

http://www.cs.cmu.edu/~15414/

L17.2
SMT Theories &

Deciding Uninterpreted Functions

• The theory of equality and uninterpreted functions (EUF), and how to use the congru-
ence closure algorithm for deciding conjunctive, quantifier free formulas in EUF.

2 SMT Theories

A first-order theory T is defined by the following components.

• It’s signature Σ is a set of constant, function, and predicate symbols.

• It’s set of axioms A is a set of closed first-order logic formulae in which only
constant, function, and predicate symbols of Σ appear.

Definition 1 (T -valid). A Σ-formula φ is valid in the theory T (T -valid), if every inter-
pretation I that satisfies the axioms of T (i.e., I |= A for every A ∈ A) also satisfies φ
(i.e., I |= φ).

Definition 2 (T -satisfiable). Let T be a Σ-theory. A Σ-formula φ is T -satisfiable if there
exists an interpretation I such that I |= A and I |= φ.

Definition 3 (T -decidable). A theory T is decidable if T |= φ is decidable for every
Σ-formula. That is, there exists an algorithm that always terminate with “yes” if φ is
T -valid or with “no” if φ is T -invalid.

SMT supports many different theories such as linear real arithmetic, linear integer
arithmetic, fixed-width bitvectors, arrays, and equality with uninterpreted functions.
Formulas can combine these theories and we can solve them using the DPLL(T) pro-
cedure as described in the previous lecture. To use DPLL(T), we need a decision pro-
cedure for each of these theories. However, decision procedures for these and other
theories have been developed during the last decades. Even though we will not go
into detail on how these procedures work, we will highlight some of the methods and
their respective complexity. In this lecture, we will restrict ourselves to quantifier-free
theories.

• Linear Real Arithmetic. Consider formulas using linear real arithmetic that are
conjunctions of linear constraints over R. These formulas can be decided in poly-
nomial time but in practice is often solved with the general Simplex method which
is in the worst-case exponential. It can also be decided by other exponential meth-
ods like the Fourier-Motzkin elimination. If you are interested in known more
about the Simplex algorithm you can take a look at the lecture notes from “15-451
Design and Analysis of Algorithms”.

• Linear Integer Arithmetic. Consider formulas using a conjunction of linear con-
straints over Z. Deciding if a formula is satisfiable or not in this domain is NP-
Complete. We refer the interested reader for the same lecture notes of “15-451 De-
sign and Analysis of Algorithms”. These formulas can be solved with techniques
such as branch-and-bound (which are based on Simplex) that are commonly used

15-414 LECTURE NOTES RUBEN MARTINS

https://www.cs.cmu.edu/~15451-f20/LectureNotes/linear-prg-2.pdf
https://www.cs.cmu.edu/~15451-f20/LectureNotes/linear-prg-2.pdf
https://www.cs.cmu.edu/~15451-f20/LectureNotes/linear-prg-2.pdf
https://www.cs.cmu.edu/~15451-f20/LectureNotes/linear-prg-2.pdf

SMT Theories &
Deciding Uninterpreted Functions L17.3

in commercial linear integer arithmetic solvers such as Gurobi or CPLEX. Other
approaches include the Omega Test which is an extension of Fourier-Motkzin.

• Fixed-Width Bitvectors. Consider formulas with an arbitrary combination of con-
straints over bitvectors. Deciding if a formula is satisfiable or not in this domain
is NP-Complete. This problem can be reduced to a SAT problem and solved using
SAT solvers.

• Arrays. Consider formulas with constraints over read/write terms in the theory
of arrays. The problem of deciding the satisfiability of these formulas can be re-
duced to TE satisfiability. However, because the reduction introduces disjunctions
this problem is also NP-Complete.

• Equality with uninterpreted functions. Consider formulas with conjunctions
of equality constraints over uninterpreted functions. The satisfiability of these
formulas can be decided by using the congruence closure algorithm that will be
explained in detail in these lecture notes. This algorithm has polynomial time
complexity.

3 Theory of Equality with Uninterpreted Functions (EUF)

The theory of equality with uninterpreted functions TE has a signature that consists
of a single binary predicate =, and all possible constant (a, b, c, x, y, z, . . .) and function
(f, g, h, . . .) symbols:

ΣE : {=, a, b, c, . . . , f, g, h, . . .}

The axioms of TE define the usual meaning of equality (reflexivity, symmetry, and tran-
sitivity), as well as functional congruence.

1. ∀x.x = x (reflexivity)

2. ∀x, y.x = y → y = x (symmetry)

3. ∀x, y, z.x = y ∧ y = z → x = z (transitivity)

4. ∀x, y.x = y → f(x̄) = f(ȳ) (congruence)

Function congruence states that whenever the arguments to a function are equal, then
the function’s value at those arguments must be equal as well. Observe that this is
equivalent to the congruence axiom from the theory of arrays, if we replace function
applications with their corresponding read terms. In fact, it generalizes array congru-
ence, because it can also stated so that it applies to functions with multiple arguments.
If x̄ and ȳ are sequences x0, . . . , xn and y0, . . . , yn of variables, then Equation 1 formal-
izes congruence over n-ary functions.

∀x̄, ȳ.(
∧n

i=1 xi = yi)→ f(x̄) = f(ȳ) (1)

15-414 LECTURE NOTES RUBEN MARTINS

https://www.gurobi.com/
https://www.ibm.com/analytics/cplex-optimizer

L17.4
SMT Theories &

Deciding Uninterpreted Functions

For the purposes of today’s lecture, we only need to consider unary functions of a single
argument, because they are sufficient to capture the meaning of read terms in the theory
of arrays.

We note that many treatments of this theory also include predicate symbols, and have
a corresponding notion of predicate congruence. The algorithm that we present later
will work on formulas that include predicates as well, with minimal modifications; our
use of EUF to reason about arrays does not require them, so we leave predicates out of
the theory for the rest of the lecture.

Example 4. Consider the Σ-formula φ

f(f(f(a))) = a ∧ f(f(f(f(f(a))))) = a ∧ f(a) ̸= a

φ is TE-unsatisfiable. We can make the following intuitive argument: substituting a
for f(f(f(a))) in f(f(f(f(f(a))))) = a by the first equality yields f(f(a)) = a; substi-
tuting a for f(f(a)) in f(f(f(a))) = a according to this new equality yields f(a) = a,
contradicting the literal f(a) ̸= a. Formally, we can apply the axioms of TE and derive
the same contradiction:

1. f(f(f(f(a)))) = f(a) first literal of φ (congruence)

2. f(f(f(f(f(f(a)))))) = f(f(a)) step 1 (congruence)

3. f(f(a)) = f(f(f(f(f(f(a)))))) step 2 (symmetry)

4. f(f(a)) = a step 3 and second literal of φ (transitivity)

3.1 Deciding EUF: The Congruence Closure Algorithm

Each positive positive literal s = t of a Σ-formula φ over TE asserts an equality between
two terms s and t. Applying the axioms of TE produces more equalities over terms that
occur in φ. Since there are only a finite number of terms in φ, only a finite number
of equalities among these terms are possible. Hence, one of two situations eventually
occurs: either some equality is formed that directly contradicts a negative literal s′ ̸=
t′ of φ; or the propagation of equalities ends without finding a contradiction. These
cases correspond to TE-unsatisfiability and TE-satisfiability, respectively, of φ. In this
section, we will formally describe this procedure as forming the congruence closure of
the equality relation over terms asserted by φ.

Models of equality. We begin by introducing the notion of a congruence relation in
Definition 5.

Definition 5 (Congruence relation, congruence class). Consider a set S and functions
F = {f1, . . . , fn}. A relation R over S is a congruence relation if for every function f ∈ F ,
it satisfies the following:

1. Reflexive: ∀s ∈ S.sR s

15-414 LECTURE NOTES RUBEN MARTINS

SMT Theories &
Deciding Uninterpreted Functions L17.5

2. Symmetric: ∀s1,s2 ∈ S.s1Rs2 → s2Rs1

3. Transitive: ∀s1,s2,s3 ∈ S.s1Rs2 ∧ s2Rs3 → s1Rs3

4. Congruent: ∀s,tsR t→ f(s)Rf(t)

We say that two elements x, y ∈ S are in the same congruence class of R whenever xR y,
and write [x]R to denote the set of elements in x’s congruence class.

You may have noticed that the requirements of a congruence relation mirror the ax-
ioms of our present theory. Suppose that we are shown a congruence relation R over
the set S = {a, b, f(a), f(b)}. The properties of congruence relations make it possible
for us to construct a satisfiable EUF formula from R. For example, if R relates the pairs
{(a, b), (f(a), f(b))}2 from S, then we could derive:

a = b ∧ f(a) = f(b) ∧ a ̸= f(a) ∧ a ̸= f(b) ∧ b ̸= f(a) ∧ b ̸= f(b)

In other words, any pair related by R appears in an equality literal, and any possible
pair not in R in a negative equality literal. We know that this formula will be satisfi-
able, because everything that is equated came from R, which is reflexive, symmetric,
transitive, and congruent.

If we could “reverse” this reasoning, and derive a congruence relation for a given
formula, then perhaps we could decide that the formula is satisfiable. For example,
given the formula P ≡ a = f(x)∧ a = g(y)∧ x ̸= y, then R = {(a, (f(x)), (a, g(y)), . . .)}
would be such a relation. Note that the ellipses refer to an infinite set of pairs that follow
from nested applications of f and g via congruence. For example, because aR f(x),
congruence says that f(a)Rf(f(x)), and that f(f(a))Rf(f(f(x))), and . . . , must also
be true. Congruence relations will always be impossible to write down for this reason,
and we will instead use the convention of denoting them by their congruence classes
only over the terms that appear in the formula. We would thus denote R in this way as
{{a, f(x), g(y)}, {x}, {y}}.

We can say that R models P , written R |= P , as it demonstrates the satisfiability of
P . In whatever domain the terms of P range over, we could assign a unique element
for each congruence class of R. Then any assignment where variables and function
applications map to the element for their congruence class will satisfy P .

To see this concretely, let us assume that a, b, x, y, f , and g range over integers. The
current relation R has three equivalence classes: one containing a, f(x), g(y), another
containing x, and one containing y. If we let 0 be the element for the first class, 1 be for
the second, and 2 for the third, then a satisfying assignment M would be:

M(a) = 0,M(x) = 1,M(y) = 2,M(f) = M(g) = [0 7→ 0, 1 7→ 0, 2 7→ 0]

To conclude, given a congruence relation over the terms appearing in a formula, we can
construct an assignment to the variables and function values appearing in that formula.
Moreover, this assignment will be consistent with the axioms of equality, as well as with
function congruence.

2We do not include the symmetric pairs (b, a) and (f(a), f(b)) explicitly to save space, but they must be
in R for it to be a congruence relation.

15-414 LECTURE NOTES RUBEN MARTINS

L17.6
SMT Theories &

Deciding Uninterpreted Functions

Minimal models. Observe that not all congruence relations over {a, f(x), g(y), x, y}
from the example in the previous paragraph work as models of P . For any set S of
terms in a formula P , the relation containing one congruence class is always trivially a
congruence relation. This corresponds to the maximal congruence relation Rmax over
S, and if there is a negative equality literal in P , then Rmax will not model P . In the
example from the previous paragraph, this relation would allow x and y to be assigned
to the same element 0, because xRmax y.

In general, a congruence relation R does not model a formula P whenever there exist
a set of terms s, t where sR t and a negative equality s ̸= t in P . Thus, when searching
for a relation that models a formula, we want to find the minimal congruence relation in
order to avoid relating terms that conflict with a negative equality in P . This motivates
the definition of congruence closure, detailed in Definition 6.

Definition 6 (Congruence closure). The congruence closure Rcong of the binary relation
R over S is the unique relation which satisfies:

• Rcong relates everything that R does: R ⊆ Rcong.

• Rcong is the smallest congruence relation satisfying (1). If R′ is a congruence rela-
tion that satisfies (1), then Rcong ⊆ R′.

Note that the congruence closure of a given relation always exists, because Rmax is a
congruence relation; in the “worst” case, it may also be the smallest congruence relation
containing R.

A bit of thought should convince you that if we begin with a relation R that cap-
tures the equality literals in P , and compute its congruence closure, then whenever P
is satisfiable, Rcong will model it. Returning to the previous example,

P ≡ a = f(x) ∧ a = g(y) ∧ x ̸= y

The relation that captures the equality literals in P is given by R = {(a, f(x)), (a, g(y))}
(omitting the necessary reflexive and symmetric pairs for clarity). The congruence clo-
sure of R is,

R = {(a, f(x)), (a, g(y)), (f(x), g(y)), (f(a), f(f(x))), (g(a), g(g(y)), (f(f(x)), f(g(y))), . . .}

For both relations, the congruence classes restricted to {a, x, y, f(x), f(y)} (i.e., the terms
appearing in the formula), are {{a, f(x), f(y)}, {x}, {y}}. In other words, in this case
we can find a model of P just by processing the equality literals that appear in it because
the classes of R are identical to those of Rcong.

As you might expect, this isn’t always the case. Consider the example from earlier in
the notes.

φ : f(f(f(a))) = a ∧ f(f(f(f(f(a))))) = a ∧ f(a) ̸= a

The initial relation is R = {(f3(a), a), (f5(a), a)}. The set of terms appearing in the
formula are S = {a, f(a), f2(a), f3(a), f4(a), f5(a)}, so the initial relation gives classes
{{a, f3(a), f5(a)}, {f(a)}, {f2(a)}, {f4(a)}}. If we assign, for example, f(a) and f4(a)

15-414 LECTURE NOTES RUBEN MARTINS

SMT Theories &
Deciding Uninterpreted Functions L17.7

to different elements, then congruence is violated because aR f3(a). So in this case we
do in fact need to compute the congruence closure, which has just one class:

{{a, f(a), f2(a), f3(a), f4(a), f5(a)}}

In other words, everything in the formula must be related.
In this case, the congruence closure conflicts with f(a) ̸= a. Can we conclude that

the formula is not satisfiable based on just that evidence? Thanks to the work of
Shostak [Sho78] in the 1970’s, we can answer this question affirmatively. The proof
of this result is beyond the scope of today’s lecture, but your intuition should serve you
well in believing the claim. If the minimal relation that satisfies the reflexive, symmet-
ric, transitive, and congruence axioms also conflicts with a negative equality in P , then
how could one ever find a way to assign these terms to values that did not contradict
the negative equality literal? Any such “satisfying” assignment would fail to account
for one of the axioms, and thus fail as a model of the EUF formula.

The algorithm. To summarize what we have learned so far, we have that a congru-
ence relation over the terms of a formula corresponds to an assignment that is consistent
with the axioms of EUF. For a given relation, the congruence closure is the smallest con-
gruence relation that contains R. If we begin with a relation that reflects the positive
equality literals in a formula, and find its congruence closure, then the result will also
give us a satisfying assignment if one exists.

We now turn to computing the congruence closure. The algorithm works explicitly
with a representation of the congruence classes, rather than the relation itself. In the
following, we will use the infix operator ∼= to refer to the congruence closure that is
computed by the algorithm, and P to the formula being processed.

1. Let SP be the set of all terms, and their subterms (recursively), in P .

2. Initialize ∼= by placing each element of SP in its own congruence class.

3. For every positive literal s = t in P , merge the congruence classes of s and t.

4. While ∼= changes, repeat the following:

a) Propagate the congruence axiom, to account for any merged congruence
classes from the previous step. For any s ∼= t, if f(. . . , s, . . .) and f(. . . , t, . . .)
are currently in different congruence classes, then merge them.

5. Check the negative equality literals in P against the computed ∼=.

• For any s ̸= t appearing in P , if s ∼= t, then return that P is unsat.

• Otherwise, s ̸∼= t for all s ̸= t appearing in P , so return that P is sat.

Recall the assumptions that we have made about the formula P : it is in the con-
junctive, quantifier-free frament of EUF. This is why it is possible to return unsat after
finding just a single conflict with a negative equality literal. If there were a disjunction

15-414 LECTURE NOTES RUBEN MARTINS

L17.8
SMT Theories &

Deciding Uninterpreted Functions

in P , then this conclusion would not be possible. For the conjunctive quantifier-free
fragment, the algorithm is sound and complete.

Soundness means that whenever this procedure terminates, it produces the correct
answer, and as we discussed earlier, Shostak [Sho78] proved this. It is also complete,
which means that it will always terminate, because the cardinality of the initial set
of congruence classes is finite: each time a pair of congruence classes is merged, the
procedure makes progress towards termination, which at the very least must occur
when there is only one congruence class under ∼=.

To efficiently implement the procedure, a popular approach is to take advantage of a
union-find data structure. This is an acyclic graphical data structure where each node
represents a term in SP . Directed edges encode the subterm structure of P , i.e., the node
for term f(a) would have an edge to the node representing a. Congruence classes are
also represented by directed edges, by arbitrarily picking a representative element from
each congruence class, and drawing edges towards its node from all other members of
its class.

Bradley and Manna describe such an implementation strategy [BM07, Chapter 9]
that yields O(e2) runtime, where e is the number of positive equality literals in P , with
O(|SP |) merge operations. Downey, Sethi, and Tarjan gave an algorithm with better
average-case complexity, O(e log e) and O(|SP |) merges [DST80].

We’ll conclude this section with a few examples to illustrate the procedure.

Example 7. Consider the formula:

P : f(a, b) = a ∧ f(f(a, b), b) ̸= a

The subterm set SP is {a, b, f(a, b), f(f(a, b), b)}, so we construct the initial relation by
giving each element its own congruence class:

∼=0: {{a}, {b}, {f(a, b)}, {f(f(a, b), b)}}

There is one equality in P , f(a, b) = a, so we merge the first and third congruence
classes:

∼=1: {{a, f(a, b)}, {b}, {f(f(a, b), b)}}

Now we must check to see if there are congruences to propagate. Now that a and f(a, b)
are in the same class, we must determine whether any applications of f(·, b) to either of
these terms resides in a different class. We see that f(·, b) applied to a, i.e. f(a, b), is in a
different class than f(·, b) applied to f(a, b), i.e., f(f(a, b), b). So we merge them, giving
the relation:

∼=2: {{a, f(a, b), f(f(a, b), b)}, {b}}.

As there are no further applications of f in any but the first equivalence class, there are
no further opportunities to propagate congruence, so ∼=2 is the congruence closure of
∼=0. The last step of the procedure scans the negative literals in P to determine whether
∼=2 is a model. In this case, it is not, because there is one negative literal, f(f(a, b), b) ̸= a,
but these terms are in the same congruence class of ∼=2. Thus, the formula is unsat.

15-414 LECTURE NOTES RUBEN MARTINS

SMT Theories &
Deciding Uninterpreted Functions L17.9

Example 8. Now we’ll return to the example from earlier, but derive the congruence
closure via the algorithm.

P : f(f(f(a))) = a ∧ f(f(f(f(f(a))))) = a ∧ f(a) ̸= a

As we said before, the subterm set is SP = {a, f(a), f2(a), f3(a), f4(a), f5(a)}, so the
initial relation is:

∼=0: {{a}, {f(a)}, {f2(a)}, {f3(a)}, {f4(a)}, {f5(a)}}

There are two positive equality literals in P , so we merge f3(a) and a, as well as f5(a)
and a:

∼=1: {{a, f3(a), f5(a)}, {f(a)}, {f2(a)}, {f4(a)}}

We now look for congruences in need of merging. Looking at a and f5(a), there are no
terms of f6(a) in any classes, so no congruences need to be accounted for. But a and
f3(a) are also related under ∼=1, and because f(a) and f4(a) are in different classes, we
merge them.

∼=2: {{a, f3(a), f5(a)}, {f(a), f4(a)}, {f2(a)}}

The most recent merge implies that f2(a) and f5(a) should also be merged:

∼=3: {{a, f2(a), f3(a), f5(a)}, {f(a), f4(a)}}

And now, because f2(a) ∼=3 f
3(a), we must merge the two remaining classes:

∼=4: {{a, f(a), f2(a), f3(a), f4(a), f5(a)}}

This latest ∼=4 must be the congruence closure, because there are no further opportuni-
ties to merge distinct classes. Moving on to the final step, there is one negative literal
f(a) ̸= a in P , and f(a) ∼=4 a, so P is unsat.

Example 9. Consider another formula P :

P : f(x) = f(y) ∧ x ̸= y

The subterm set Sφ induces the following initial partition:

∼=0: {{x}, {y}, {f(x)}, {f(y)}}

Since f(x) = f(y) we can merge those two congruence classes:

∼=1: {{x}, {y}, {f(x), f(y)}}

The union {f(x), f(y)} does not yield any new congruences, so we reached a con-
gruence closure. This formula is satisfiable since x ̸= y but x and y belong to different
congruence classes.

15-414 LECTURE NOTES RUBEN MARTINS

L17.10
SMT Theories &

Deciding Uninterpreted Functions

References

[BM07] Aaron R. Bradley and Zohar Manna. The Calculus of Computation: Decision
Procedures with Applications to Verification. Springer-Verlag New York, Inc., Se-
caucus, NJ, USA, 2007.

[DST80] Peter J. Downey, Ravi Sethi, and Robert Endre Tarjan. Variations on the com-
mon subexpression problem. Journal of the ACM, 27(4):758–771, oct 1980.

[KS16] Daniel Kroening and Ofer Strichman. Decision Procedures - An Algorithmic
Point of View. Texts in Theoretical Computer Science. An EATCS Series.
Springer, 2016.

[Sho78] Robert E. Shostak. An algorithm for reasoning about equality. Communications
of the ACM, 21(7):583–585, jul 1978.

15-414 LECTURE NOTES RUBEN MARTINS

	Introduction
	SMT Theories
	Theory of Equality with Uninterpreted Functions (EUF)
	Deciding EUF: The Congruence Closure Algorithm

