
Assignment 5
(I can’t get no) Satisfaction

15-414: Bug Catching: Automated Program Verification

Due Friday, March 22, 2024
70 pts

This assignment is due on the above date and it must be submitted electronically on Grade-
scope. Please carefully read the policies on collaboration and credit on the course web pages at
http://www.cs.cmu.edu/~15414/assignments.html.

What To Hand In

You should hand in the following files on Gradescope:

• Submit the file asst5.zip to Assignment 5 (Code). You can generate this file by running
make handin. This will include your solution baby-sat.mlw and the proof session in baby-sat/.

• Submit a PDF containing your answers to the written questions to Assignment 5 (Written).
You may use the file asst5-sol.tex as a template and submit asst5-sol.pdf. You can
generate this file by running make sol (assuming you have pdflatex in your system).

Make sure your session directories and your PDF solution files are up to date before
you create the handin file.

Using LaTeX

We prefer the answer to your written questions to be typeset in LaTeX, but as long as you hand
in a readable PDF with your solutions it is not a requirement. We package the assignment source
asst5.tex and a solution template asst5-sol.tex in the handout to get you started on this.

ASSIGNMENT 5 DUE FRIDAY, MARCH 22, 2024
70 PTS

http://www.cs.cmu.edu/~15414/assignments.html

(I can’t get no) Satisfaction HW5.2

1 Encodings (20 pts)

Task 1 (10 pts). Consider the following CNF formula:

¬x1 ∨ ¬x2 C1

x1 ∨ x2 C2

¬x1 ∨ ¬x3 C3

x1 ∨ x3 C4

¬x2 ∨ ¬x3 C5

x2 ∨ x3 C6

Show that this formula is unsatisfiable by using resolution to derive the empty clause. You
should present your derivation as done in the Lecture Notes 14 (page 5).

Task 2 (10 pts). Consider a 2-coloring problem for integers between 1 and 5 such that for every
integer solution a+ b = c with 1 ≤ a < b < c ≤ n holds that a, b, and c do not have the same color.
Note that the possible sums with numbers 1 to 5 under these conditions are:

• 1 + 2 = 3

• 1 + 3 = 4

• 1 + 4 = 5

• 2 + 3 = 5

Write a propositional encoding for this problem. How you choose to encode colors and integers
(i.e., unary or binary) is your choice, but be sure to explain how each propositional variable should
be interpreted, as well as the rationale for the clauses in your formula.

2 Baby SAT steps (50 pts)

In this assignment, we will explore simple operations that can be performed over formulas in the
conjunctive normal form before we build our first verified SAT solver. You may write auxiliary
predicates or functions beyond the ones provided in baby-sat.mlw.

Consider the following types that define a variable (var), literal (lit: which is define as a pos-
itive (e.g. x1) or negative variable (¬x1)), clause, cnf formula, and valuation. Assume that the
variables range from 0 to nvars − 1 and that the cnf formulas have 0 or more variables.

1 type var = int

2 type lit = { var : var ; sign : bool }

3 type clause = list lit

4 type cnf = { clauses : array clause ; nvars : int }

5 type valuation = array bool

An example of how a CNF is represented using this type is provided Figure 1.
Note that for a clause to be satisfied, there exists at least one literal in the clause that is satisfied.

A positive literal is satisfied if the variable is assigned true, while a negative literal is satisfied if
the variable is assigned false. For the formula in Figure 1, a valuation (also called interpretation in
some future lecture notes) is represented as an array of booleans whose ith component is the value
of xi. For this formula, the valuation [⊤,⊥,⊤,⊥] would satisfy all clauses (this valuation would
assign x0 = ⊤, x1 = ⊥, x2 = ⊤, x3 = ⊥).

ASSIGNMENT 5 DUE FRIDAY, MARCH 22, 2024
70 PTS

https://www.cs.cmu.edu/~15414/lectures/14-resolution.pdf

(I can’t get no) Satisfaction HW5.3

{ nvars = 4;

clauses = [

[{var=3; sign=false}];

[{var=0; sign=true}; {var=2; sign=false}; {var=3; sign=true}];

[{var=1; sign=false}; {var=2; sign=true}]] }

Figure 1: Representation of the formula ¬x3 ∧ (x0 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2).

Task 3 (5 pts). Write data structure invariants for the type cnf.

Task 4 (10 pts). Specify and implement a function eval_clause that takes a valuation ρ and a
clause c as its arguments and returns true if c is true for valuation ρ and false otherwise.

Task 5 (15 pts). Specify and implement a function eval_cnf that takes a valuation ρ and a formula
cnf in conjunctive normal form as its arguments and returns true if cnf is true for valuation ρ
and false otherwise.

Pure Literals

Any variable that only appears in either positive or negative literals is called pure, and their cor-
responding variables can always be assigned in a way that satisfies the literal. Thus, they do not
constrain the problem in a meaningful way, and can be assigned without making a choice. This is
called pure literal elimination and is one type of simplification that can be applied to CNF formulas.
Consider the following CNF formula:

(x1 ∨ x2)︸ ︷︷ ︸
C0

∧ (¬x1 ∨ x2)︸ ︷︷ ︸
C1

∧ (x1 ∨ ¬x2 ∨ x3)︸ ︷︷ ︸
C2

∧ (¬x1 ∨ x2 ∨ x3)︸ ︷︷ ︸
C3

Notice that x3 appears only as a positive literal in this formula. Hence, we can assign x3 to true
and satisfy the literal. This procedure will simplify the above formula into:

(x1 ∨ x2) ∧ (¬x1 ∨ x2) ∧ (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x1 ∨ x3)

↔ (x1 ∨ x2) ∧ (¬x1 ∨ x2) ∧ (x1 ∨ ¬x2 ∨ ⊤) ∧ (¬x1 ∨ x1 ∨ ⊤)

↔ (x1 ∨ x2) ∧ (¬x1 ∨ x2)

Note that if a formula is satisfiable and if a literal l is pure, then it is always possible to have an
interpretation that satisfies the literal, i.e., assigns l to true if l is positive or to false if l is negative.

Task 6 (20 pts). Specify and implement a function pure_literal that takes a formula cnf in con-
junctive normal form and a literal l as its arguments and returns true if l is a pure literal and false

otherwise.

ASSIGNMENT 5 DUE FRIDAY, MARCH 22, 2024
70 PTS

	Encodings (20 pts)
	Baby SAT steps (50 pts)

